


FIS
Page 2, April 11, 2016 FIS



GTM V6.3-000
FIS

April 11, 2016, Page 3

Contact Information

GT.M Group 
Fidelity National Information Services, Inc. 
200 Campus Drive 
Collegeville, PA 19426
United States of America

                      GT.M Support for customers: gtmsupport@fisglobal.com 
                      Automated attendant for 24 hour support: +1 (484) 302-3248
                      Switchboard: +1 (484) 302-3160
                      Website: http://fis-gtm.com
                    

Legal Notice

Copyright ©2016 Fidelity National Information Services, Inc. and/or its subsidiaries. All Rights Reserved.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation
License, Version 1.3 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-
Cover Texts and no Back-Cover Texts.

GT.M™ is a trademark of Fidelity National Information Services, Inc. Other trademarks are the property of their respective
owners.

This document contains a description of GT.M and the operating instructions pertaining to the various functions that
comprise the system. This document does not contain any commitment of FIS. FIS believes the information in this publication
is accurate as of its publication date; such information is subject to change without notice. FIS is not responsible for any errors
or defects.

Revision History

Revision 1.1 11 April 2016 • Added V6.3-000 messages that
got missed in revision 1.0 due to a
documentation error.

• Added the release note for
GTM-8511.

• In Additional Information for
GTM-8296 - %PEEKBYNAME(),
added an entry for the epoch taper
set region parameter.

Revision 1.0 29 March 2016 V6.3-000

http://fis-gtm.com
http://www.gnu.org/licenses/fdl.txt
http://www.gnu.org/licenses/fdl.txt


GTM V6.3-000
Page 4, April 11, 2016 FIS



GT.M V6.3-000
FIS

April 11, 2016, Page v

Table of Contents
V6.3-000 ..........................................................................................................................................  1

Overview  ..............................................................................................................................  1
Conventions ............................................................................................................................  2
Platforms  ..............................................................................................................................  4

Platform support lifecycle  .............................................................................................  7
32- vs. 64-bit platforms ............................................................................................................  7

Call-ins and External Calls ..............................................................................................  7
Internationalization (Collation) .......................................................................................  8
Environment Translation ................................................................................................  8

Recompile  .............................................................................................................................  8
Rebuild Shared Libraries or Images ..........................................................................................  8
Additional Installation Instructions ..........................................................................................  9

.......................................................................................................................................  9
Upgrading to GT.M V6.3-000 ................................................................................................  10

Stage 1: Global Directory Upgrade ................................................................................  11
Stage 2: Database Files Upgrade ....................................................................................  11
Stage 3: Replication Instance File Upgrade .....................................................................  13
Stage 4: Journal Files Upgrade ......................................................................................  14
Stage 5: Trigger Definitions Upgrade ............................................................................. 14
Downgrading to V5 or V4  ...........................................................................................  15

Managing M mode and UTF-8 mode ......................................................................................  16
Setting the environment variable TERM .................................................................................  18
Installing Compression Libraries ...........................................................................................  18

Change History ............................................................................................................................  19
V6.3-000 ................................................................................................................................  19

Database  ......................................................................................................................................  25
Language  ......................................................................................................................................  29
System Administration  .................................................................................................................  35
Other  ...........................................................................................................................................  47
More Information ..........................................................................................................................  49

Additional information for GTM-7291 - MUPIP JOURNAL -ROLLBACK qualifiers ....................  49
Additional Information for GTM-8296 - %PEEKBYNAME() ......................................................  50

Examples: ......................................................................................................................  51
LISTALL^%PEEKBYNAME .............................................................................................  51
LIST^%PEEKBYNAME(.output) .......................................................................................  51
Labels for Selected Fields ...............................................................................................  51

Error and Other Messages .............................................................................................................  57
CRYPTJNLMISMATCH   ......................................................................................................  57
CRYPTKEYRELEASEFAILED   ..............................................................................................  57
CRYPTNOKEY   ...................................................................................................................  57
ENCRYPTCONFLT   .............................................................................................................  57
EXTRINTEGRITY   ...............................................................................................................  58
GDINVALID   ......................................................................................................................  58
INVLINKTMPDIR   ..............................................................................................................  58



FIS
Page vi, April 11, 2016 FIS

INVLOCALE   ......................................................................................................................  58
INVZWRITECHAR   ............................................................................................................  59
IOEOF   ...............................................................................................................................  59
JNLDBSEQNOMATCH   .......................................................................................................  59
JNLPOOLRECOVERY   .........................................................................................................  59
JOBLVN2LONG   .................................................................................................................  60
JOBLVNDETAIL   ................................................................................................................  60
MULTIPROCLATCH   ..........................................................................................................  60
MUPIPSET2BIG   .................................................................................................................  60
MUPIPSET2SML   ................................................................................................................  61
MUPJNLINTERRUPT   ..........................................................................................................  61
MUREENCRYPTEND   .........................................................................................................  61
MUREENCRYPTSTART   ......................................................................................................  61
MUREENCRYPTV4NOALLOW   ...........................................................................................  61
NLRESTORE   ......................................................................................................................  62
NOMORESEMCNT   ............................................................................................................  62
NONTPRESTART   ...............................................................................................................  62
NOPRINCIO   ......................................................................................................................  63
NOTALLJNLEN   .................................................................................................................  63
NOTALLREPLON   ............................................................................................................... 63
PBNINVALID   ..................................................................................................................... 64
PBNNOFIELD   ....................................................................................................................  64
PBNNOPARM   ....................................................................................................................  64
PBNPARMREQ   ..................................................................................................................  64
PBNUNSUPSTRUCT   ........................................................................................................... 64
RECLOAD   .........................................................................................................................  65
REPLLOGOPN   ...................................................................................................................  65
REPLSTATEOFF   .................................................................................................................  65
RESRCINTRLCKBYPAS   ......................................................................................................  65
SETQUALPROB   .................................................................................................................  66
TPRESTART   ......................................................................................................................  66
TRIGINVCHSET   ................................................................................................................  67



GT.M V6.3-000
FIS

April 11, 2016, Page 1

V6.3-000

Overview

V6.3-000 brings significant enhancements to GT.M's use of encryption. One defensive technique is to
reduce the "surface" available to an attacker. V6.3-000 reduces the surface in several ways.

An attacker with the wherewithal for a brute-force attack on encryption can in theory benefit from
the voluminous, long-lived, and structurally similar data in a typical application database, such as
financial transactions and medical records. One component of a traditional layered defense-in-depth is
to change encryption keys regularly. Enabling encryption keys for database files to be changed "on the
fly" while a database is in use with V6.3-000 (GTM-6310) operationally simplifies the changing of the
keys, and makes key changes less prone to human error. The prior technique required database regions
to be extracted and loaded into newly created database files with keys different from those of their
predecessors. Context-sensitive initialization vectors (IVs) in database, journal, extract and bytestream
backup files (GTM-8117) further reduce the surface for a brute-force attack.

A properly configured Transport Layer Security (TLS; formerly known as SSL) session is required
to secure a TCP connection. However, an attacker that can record a TCP session, and with the
wherewithal for a brute force attack, or with more affordable future computing power, can in theory
retroactively break into and eavesdrop on the recorded session. Periodically renegotiating the session
key (GTM-8302) means that an attacker who succeeds in breaking a key can only eavesdrop on that
part of the session - every renegotiation generates a new key that must be separately broken.

Note that GT.M continues to include no cryptographic software - cryptographic functionality is
provided by your choice of independent, non-GT.M, cryptographic software that GT.M access through
a plugin. Distributions of GT.M since the introduction of database encryption have included the
source code for reference implementations of the plugin as tested by FIS in the GT.M development
environment against versions of popular encryption packages noted in the release notes for each GT.M
release. In V6.3-000 (GTM-8361), GT.M includes the source code of the encryption plugin, but not pre-
compiled binaries, because the wide range of versions of cryptographic software across Supported
platforms made it infeasible for us to provide a single binary that was guaranteed to run with the
robustness we require of GT.M.

V6.3-000 brings a number of useful enhancements, as well as other improvements. For example:

• Parallelization speeds MUPIP JOURNAL RECOVER/ROLLBACK operations (GTM-5007).

• For a replicated database even of an application that does not use transaction processing, MUPIP
JOURNAL -ROLLBACK -FORWARD applies updates from a set of journal files to the restored
backup of a multi-region database, bringing it to the same state that MUPIP JOURNAL -ROLLBACK
-BACKWARD would when performed on the original database, providing the same consistency
across regions that the MUPIP JOURNAL -ROLLBACK provides (GTM-7291).

• Faster database exit, especially with large numbers of processes and databases with many regions
(GTM-6301).

#GTM-6310
#GTM-8117
#GTM-8302
#GTM-8361
#GTM-5007
#GTM-7291
#GTM-6301


V6.3-000 Conventions

FIS
Page 2, April 11, 2016 FIS

• Evaluation of certain string literal operations during compilation rather than execution (GTM-7762
and GTM-8404).

• Concurrent access by more than 32K processes to a database file (GTM-8137).

• Significant performance improvements for certain UTF-8 mode use cases (GTM-8352)

Effective V6.3-000, we are changing the organization of core information in the release notes for each
GT.M version. Instead of M - Database Access, M - Other than Database Access, Utilities - MUPIP, and
Utilities-Other than MUPIP, we have the following sections:

• Database - the core of GT.M; items we believe are of interest to all users

• Language - language features; primarily of interest to programmers

• System Administration - MUPIP and GDE; primarily of interest to administration and operations staff

• Other - DSE, LKE, and changes potentially of interest to a smaller subset of users than the sections
above

As always, the release bring numerous smaller enhancements, and fixes. See the Change History below.

Please note that messages are not part of the GT.M API whose stability we strive to maintain.The
enhancements and fixes in this release bring more changes to messages, including in some cases the order of
messages, than a typical GT.M release does. Make sure that you review any automated scripting that parses
GT.M messages.

Conventions

This document uses the following conventions:

Flag/Qualifiers -

Program Names or Functions upper case. For example, MUPIP BACKUP

Examples lower case. For example: $char(10) mupip backup -
database ACN,HIST /backup

Reference Number A reference number is used to track software $char(10)
enhancements and support requests. $char(10) It is
enclosed between parentheses ().

Platform Identifier Where an item affects only specific platforms, the
platforms are listed in square brackets, e.g., [AIX]

Note

The term UNIX refers to the general sense of all platforms on which GT.M uses a
POSIX API. As of this date, this includes: AIX and GNU/Linux on x86 (32- and 64-
bits.

#GTM-7762
#GTM-8404
#GTM-8137
#GTM-8352
#GTMChng_hist


Conventions V6.3-000

GTM V6.3-000
FIS

April 11, 2016, Page 3

The following table summarizes the new and revised replication terminology and qualifiers.

Pre V5.5-000 terminology Pre V5.5-000
qualifier

Current terminology Current qualifiers

originating instance or primary
instance

-rootprimary originating instance or
originating primary instance.

Within the context of a
replication connection between
two instances, an originating
instance is referred to as
source instance or source side.
For example, in an B<-A->C
replication configuration, A is
the source instance for B and C.

-updok
(recommended)

-rootprimary (still
accepted)

replicating instance (or
secondary instance) and
propagating instance

N/A for replicating
instance or
secondary instance.

-propagateprimary
for propagating
instance

replicating instance.

Within the context of a
replication connection between
two instances, a replicating
instance that receives updates
from a source instance is
referred to as receiving instance
or receiver side. For example,
in an B<-A->C replication
configuration, both B and C can
be referred to as a receiving
instance.

-updnotok

N/A N/A supplementary instance.

For example, in an A->P->Q
replication configuration, P is
the supplementary instance.
Both A and P are originating
instances.

-updok

Effective V6.0-000, GT.M documentation adopted IEC standard Prefixes for binary multiples. This
document therefore uses prefixes Ki, Mi and Ti (e.g., 1MiB for 1,048,576 bytes). All GT.M documentation
will over time be updated to this standard.

 denotes a new feature that requires updating the manuals.

 denotes a new feature or an enhancement that may not be upward compatible and may affect an
existing application.

 denotes deprecated messages.

 denotes revised messages.

http://physics.nist.gov/cuu/Units/binary.html


V6.3-000 Platforms

FIS
Page 4, April 11, 2016 FIS

 denotes added messages.

Platforms

Over time, computing platforms evolve. Vendors obsolete hardware architectures. New versions
of operating systems replace old ones. We at FIS continually evaluate platforms and versions of
platforms that should be Supported for GT.M. In the table below, we document not only the ones that
are currently Supported for this release, but also alert you to our future plans given the evolution of
computing platforms. If you are an FIS customer, and these plans would cause you hardship, please
contact your FIS account executive promptly to discuss your needs.

GT.M runs on a variety of UNIX/Linux implementations. Consult FIS for currently supported versions.
Each GT.M release is extensively tested by FIS on a set of specific versions of operating systems on
specific hardware architectures (the combination of operating system and hardware architecture is
referred to as a platform). This set of specific versions is considered Supported. There will be other
versions of the same operating systems on which a GT.M release may not have been tested, but on
which the FIS GT.M support team knows of no reason why GT.M would not work. This larger set of
versions is considered Supportable. There is an even larger set of platforms on which GT.M may well
run satisfactorily, but where the FIS GT.M team lacks the knowledge to determine whether GT.M is
Supportable. These are considered Unsupported. Contact FIS GT.M Support with inquiries about your
preferred platform.

As of the publication date, FIS supports this release on the hardware and operating system versions
below. Contact FIS for a current list of Supported platforms. The reference implementation of the
encryption plugin has its own additional requirements, should you opt to use it as included with GT.M.

Note: V6.3-000 is the last release on which FIS plans to test the reference implementation of the
encryption plugin with the Blowfish algorithm. When database encryption was first introduced, usable
implementations of AES did not exist on all GT.M platforms. Although FIS neither recommends nor
recommends against the use of any specific cipher, we test the plugin against what we expect to be in
common use.

Platform Supported
Versions

Notes

Hewlett-Packard Integrity
IA64

HP-UX

- V6.2-002A was the last GT.M release for this platform, which is
no longer Supported. Please contact your FIS account manager if
you need ongoing support for GT.M on this platform.

Hewlett-Packard Alpha/AXP
OpenVMS

- V6.2-001 was the last GT.M release for this platform, which is no
longer supported. Please contact your FIS account manager if you
need ongoing support for GT.M on this platform.

IBM System p AIX 6.1, 7.1 Only 64-bit versions of AIX are Supported.

While GT.M supports both UTF-8 mode and M mode on
this platform, there are problems with the AIX ICU utilities
that prevent FIS from testing 4-byte UTF-8 characters as
comprehensively on this platform as we do on others.



Platforms V6.3-000

GTM V6.3-000
FIS

April 11, 2016, Page 5

Platform Supported
Versions

Notes

Running GT.M on AIX 7.1 requires APAR IZ87564, a fix for the
POW() function, to be applied. To verify that this fix has been
installed, execute  instfix -ik IZ87564.

Only the AIX jfs2 filesystem is Supported. Other filesystems,
such as jfs1 are Supportable, but not Supported. FIS strongly
recommends use of the jfs2 filesystem on AIX; use jfs1 only for
existing databases not yet migrated to a jfs2 filesystem.

Effective the next release, FIS intends to require POWER6 as
the minimum CPU architecture level on this for AIX.

Oracle (Sun) SPARC Solaris - V6.2-002A was the last GT.M release for this platform, which is
no longer Supported. Please contact your FIS account manager if
you need ongoing support for GT.M on this platform.

x86_64 GNU/Linux Red Hat
Enterprise
Linux 6 and
7; Ubuntu
12.04 LTS
14.04 LTS;
SuSE Linux
Enterprise
Server 11

To run 64-bit GT.M processes requires both a 64-bit kernel as
well as 64-bit hardware.

GT.M should also run on recent releases of other major Linux
distributions with a contemporary Linux kernel (2.6.32 or
later), glibc (version 2.12 or later) and ncurses (version 5.7 or
later).

To install GT.M with Unicode (UTF-8) support on RHEL 6, in
response to the installation question  Should an ICU version
other than the default be used? (y or n)  please respond  y 
and then specify the ICU version (for example, respond 4.2) to
the subsequent prompt  Enter ICU version (ICU version 3.6
or later required. Enter as major-ver.minor-ver):

GT.M requires the libtinfo library. If it is not already installed
on your system, and is available using the package manager,
install it using the package manager. If a libtinfo package is not
available (for example on SuSE 11):

• Find the directory where libncurses.so is installed on your
system.

• Change to that directory and make a symbolic link to
libncurses.so.<ver> from libtinfo.so.<ver>. Note that some of
the libncurses.so entries may themselves be symbolic links,
for example, libncurses.so.5 may itself be a symbolic link to
libncurses.so.5.9.

To support the optional WRITE /TLS fifth argument (the
ability to provide / override options in the tlsid section of the
encryption configuration file), the reference implementation
of the encryption plugin requires libconfig 1.4.x. As this is
a higher level than that distributed with Red Hat Enterprise
Linux 6 or Ubuntu 12.04 LTS, in order to use this feature



V6.3-000 Platforms

FIS
Page 6, April 11, 2016 FIS

Platform Supported
Versions

Notes

of WRITE/TLS on those platforms with the reference
implementation, please install libconfig 1.4.x, including the
header files, and recompile the reference implementation of
the encryption plugin.

A bug in the Linux 3.13 kernels used in Ubuntu 14.04
LTS (https://bugs.launchpad.net/ubuntu/+source/linux/
+bug/1502168) affects GT.M operation. As newer kernels
do not exhibit this misbehavior, FIS recommends that you
follow the Ubuntu LTS Enablement Stack procedure (https://
wiki.ubuntu.com/Kernel/LTSEnablementStack) and use newer
kernels to avoid the behavior until such time as the bug is
fixed in the 3.13 kernels.

Only the ext4 and xfs filesystems are Supported.
Other filesystems are Supportable, but not Supported.
Furthermore, if you use the NODEFER_ALLOCATE
feature, FIS strongly recommends that you use xfs.
If you must use NODEFER_ALLOCATE with ext4,
you must ensure that your kernel includes commit
d2dc317d564a46dfc683978a2e5a4f91434e9711 (search for
d2dc317d564a46dfc683978a2e5a4f91434e9711 at https://
www.kernel.org/pub/linux/kernel/v4.x/ChangeLog-4.0.3) is
in your kernel. The Red Hat Bugzilla identifier for the bug
is 1213487. With NODEFER_ALLOCATE, do not use any
filesystem other than ext4 and a kernel with the fix, or xfs.

In the future, FIS intends:

• effective July 1, 2017, to require the then current level of
7 (e.g, 7.2) as the minimum supported level of Red Hat
Enterprise Linux;

• effective July 1, 2017, to require 16.04 LTS, assuming it
is released as anticipated in April 2016, as the minimum
supported level of Ubuntu Linux; and

• effective October 1, 2016, to no longer consider SuSE
Linux Enterprise Server to be Supported (it will remain
Supportable to the extent that Linux distributions other than
Supported ones are considered Supportable, as noted above).

If these will cause you hardship, please contact your FIS
account manager or your GT.M support channel.

x86 GNU/Linux Red Hat
Enterprise
Linux 6 and 7

This 32-bit version of GT.M runs on either 32- or 64-bit x86
platforms; we expect the X86_64 GNU/Linux version of GT.M
to be preferable on 64-bit hardware. Running a 32-bit GT.M on
a 64-bit GNU/Linux requires 32-bit libraries to be installed. The

https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1502168
https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1502168
https://wiki.ubuntu.com/Kernel/LTSEnablementStack
https://wiki.ubuntu.com/Kernel/LTSEnablementStack
https://www.kernel.org/pub/linux/kernel/v4.x/ChangeLog-4.0.3
https://www.kernel.org/pub/linux/kernel/v4.x/ChangeLog-4.0.3


32- vs. 64-bit platforms V6.3-000

GTM V6.3-000
FIS

April 11, 2016, Page 7

Platform Supported
Versions

Notes

CPU must have an instruction set equivalent to 586 (Pentium)
or better. Also, refer to the notes above on the 64-bit version.

Please also refer to the notes above on x86_64 GNU/Linux.

Platform support lifecycle

FIS usually supports new operating system versions six months or so after stable releases are available
and we usually support each version for a two year window. GT.M releases are also normally supported
for two years after release. While FIS will attempt to provide support to customers in good standing for
any GT.M release and operating system version, our ability to provide support diminishes after the two
year window.

GT.M cannot be patched, and bugs are only fixed in new releases of software.

32- vs. 64-bit platforms

The same application code runs on both 32-bit and 64-bit platforms; however there are operational
differences between them (for example, auto-relink and the ability to GT.M object code in shared
libraries exist only on 64-bit platforms). Please note that:

• You must compile the application code separately for each platform. Even though the M source code
is the same, the generated object modules are different - the object code differs between x86 and
x86_64.

• Parameter-types that interface GT.M with non-M code using C calling conventions must match
the data-types on their target platforms. Mostly, these parameters are for call-ins, external calls,
internationalization (collation) and environment translation, and are listed in the tables below. Note
that most addresses on 64-bit platforms are 8 bytes long and require 8 byte alignment in structures
whereas all addresses on 32-bit platforms are 4 bytes long and require 4-byte alignment in structures.

Call-ins and External Calls

Parameter type 32-Bit 64-bit Remarks

gtm_long_t 4-byte
(32-bit)

8-byte
(64-bit)

gtm_long_t is much the same as the C language long type.

gtm_ulong_t 4-byte 8-byte gtm_ulong_t is much the same as the C language unsigned
long type.

gtm_int_t 4-byte 4-byte gtm_int_t has 32-bit length on all platforms.

gtm_uint_t 4-byte 4-byte gtm_uint_t has 32-bit length on all platforms



V6.3-000 Recompile

FIS
Page 8, April 11, 2016 FIS

Caution

If your interface uses gtm_long_t or gtm_ulong_t types but your interface code uses
int or signed int types, failure to revise the types so they match on a 64-bit platform
will cause the code to fail in unpleasant, potentially dangerous and hard to diagnose
ways.

Internationalization (Collation)

Parameter type 32-Bit 64-bit Remarks

gtm_descriptor in
gtm_descript.h

4-byte 8-byte Although it is only the address within these types that
changes, the structures may grow by up to 8 bytes as a
result of compiler padding to meet platform alignment
requirements.

Important

Assuming other aspects of code are 64-bit capable, collation routines should require
only recompilation.

Environment Translation

Parameter type 32-Bit 64-bit Remarks

gtm_string_t type in
gtmxc_types.h

4-byte 8-byte Although it is only the address within these types that
changes, the structures may grow by up to 8 bytes as a
result of compiler padding to meet platform alignment
requirements.

Important

Assuming other aspects of code are 64-bit capable, environment translation routines
should require only recompilation.

Recompile

• Recompile all M and C source files.

Rebuild Shared Libraries or Images

• Rebuild all Shared Libraries after recompiling all M and C source files.



Additional Installation Instructions V6.3-000

GTM V6.3-000
FIS

April 11, 2016, Page 9

Additional Installation Instructions

To install GT.M, see the "Installing GT.M" section in the GT.M Administration and Operations
Guide. For minimal down time, upgrade a current replicating instance and restart replication. Once
that replicating instance is current, switch it to become the originating instance. Upgrade the prior
originating instance to become a replicating instance, and perform a switchover when you want it
again to resume an originating primary role.

Caution

Never replace the binary image on disk of any executable file while it is in use by
an active process. It may lead to unpredictable results. Depending on the operating
system, these results include but are not limited to denial of service (that is, system
lockup) and damage to files that these processes have open (that is, database
structural damage).

• FIS strongly recommends installing each version of GT.M in a separate (new) directory, rather than
overwriting a previously installed version. If you have a legitimate need to overwrite an existing
GT.M installation with a new version, you must first shut down all processes using the old version.
FIS suggests installing GT.M V6.3-000 in a Filesystem Hierarchy Standard compliant location
such as /usr/lib/fis-gtm/V6.3-000_arch (for example, /usr/lib/fis-gtm/V6.3-000_x86 on 32-bit Linux
systems). A location such as /opt/fis-gtm/V6.3-000_arch would also be appropriate. Note that the
arch suffix is especially important if you plan to install 32- and 64-bit versions of the same release of
GT.M on the same system.

• Use the MUPIP RUNDOWN command of the old GT.M version to ensure all database files are cleanly
closed.

• Make sure gtmsecshr is not running. If gtmsecshr is running, first stop all GT.M processes including
the DSE, LKE and MUPIP utilities and then perform a MUPIP STOP pid_of_gtmsecshr.

• Starting with V6.2-000, GT.M no longer supports the use of the deprecated $gtm_dbkeys and
the master key file it points to for database encryption. To convert master files to the libconfig

format, please click  to download the CONVDBKEYS.m program and follow instructions in
the comments near the top of the program file. You can also download CONVDBKEYS.m from
http://tinco.pair.com/bhaskar/gtm/doc/articles/downloadables/CONVDBKEYS.m. If you are
using $gtm_dbkeys for database encryption, please convert master key files to libconfig format
immediately after upgrading to V6.2-000. Also, modify your environment scripts to include the use of
gtmcrypt_config environment variable.

Compiling the Reference Implementation Plugin

If you plan to use database encryption and TLS replication, you must compile the reference
implementation plugin to match the shared library dependencies unique to your platform. The
instructions for compiling the Reference Implementation plugin are as follows:

http://tinco.pair.com/bhaskar/gtm/doc/articles/downloadables/CONVDBKEYS.m


V6.3-000 Upgrading to GT.M V6.3-000

FIS
Page 10, April 11, 2016 FIS

1. Install the development headers and libraries for libgcrypt, libgpgme, libconfig, and libssl. On
Linux, the package names of development libraries usually have a suffix such as -dev or -devel and
are available through the package manager. For example, on Ubuntu_x86_64 a command like the
following installs the required development libraries:

sudo apt-get install libgcrypt11-dev libgpgme11-dev libconfig-dev libssl-dev

Note that the package names may vary by distribution / version.

2. Unpack $gtm_dist/plugin/gtmcrypt/source.tar to a temporary directory.

mkdir /tmp/plugin-build
cd /tmp/plugin-build
cp $gtm_dist/plugin/gtmcrypt/source.tar . 
tar -xvf source.tar

3. Follow the instructions in the README.

• Open Makefile with your editor; review and edit the common header (IFLAGS) and library paths
(LIBFLAGS) in the Makefile to reflect those on your system.

• Define the gtm_dist environment variable to point to the absolute path for the directory where
GT.M is installed

• Copy and paste the commands from the README to compile and install the encryption plugin
with the permissions defined at install time

Upgrading to GT.M V6.3-000

The GT.M database consists of four types of components- database files, journal files, global directories,
and replication instance files. The format of some database components is different for 32-bit and 64-bit
GT.M releases for the x86 GNU/Linux platform.

GT.M upgrade procedure for V6.3-000 consists of 5 stages:

• Stage 1: Global Directory Upgrade

• Stage 2: Database Files Upgrade

• Stage 3: Replication Instance File Upgrade

• Stage 4: Journal Files Upgrade

• Stage 5: Trigger Definitions Upgrade

Read the upgrade instructions of each stage carefully. Your upgrade procedure for GT.M V6.3-000
depends on your GT.M upgrade history and your current version.



Upgrading to GT.M V6.3-000 V6.3-000

GTM V6.3-000
FIS

April 11, 2016, Page 11

Stage 1: Global Directory Upgrade

FIS strongly recommends you back up your Global Directory file before upgrading. There is no single-
step method for downgrading a Global Directory file to an older format.

To upgrade from any previous version of GT.M:

• Open your Global Directory with the GDE utility program of GT.M V6.3-000.

• Execute the EXIT command. This command automatically upgrades the Global Directory.

To switch between 32- and 64-bit global directories on the x86 GNU/Linux platform:

1. Open your Global Directory with the GDE utility program on the 32-bit platform.

2. On GT.M versions that support SHOW -COMMAND, execute SHOW -COMMAND -FILE=file-name.
This command stores the current Global Directory settings in file-name.

3. On GT.M versions that do not support GDE SHOW -COMMAND, execute the SHOW -ALL
command. Use the information from the output to create an appropriate command file or use it as a
guide to manually enter commands in GDE.

4. Open GDE on the 64-bit platform. If you have a command file from 2. or 3., execute @file-name
and then run the EXIT command. These commands automatically create the Global Directory.
Otherwise use the GDE output from the old Global Directory and apply the settings in the new
environment.

An analogous procedure applies in the reverse direction.

If you inadvertently open a Global Directory of an old format with no intention of upgrading it, execute
the QUIT command rather than the EXIT command.

If you inadvertently upgrade a global directory, perform the following steps to downgrade to an old
GT.M release:

• Open the global directory with the GDE utility program of V6.3-000.

• Execute the SHOW -COMMAND -FILE=file-name command. This command stores the current
Global Directory settings in the file-name command file. If the old version is significantly out of date,
edit the command file to remove the commands that do not apply to the old format. Alternatively,
you can use the output from SHOW -ALL or SHOW -COMMAND as a guide to manually enter
equivalent GDE commands for the old version.

Stage 2: Database Files Upgrade

To upgrade from GT.M V5.0*/V5.1*/V5.2*/V5.3*/V5.4*/V5.5:

A V6 database file is a superset of a V5 database file and has potentially longer keys and records.
Therefore, upgrading a database file requires no explicit procedure. After upgrading the Global
Directory, opening a V5 database with a V6 process automatically upgrades fields in the database
fileheader.



V6.3-000 Upgrading to GT.M V6.3-000

FIS
Page 12, April 11, 2016 FIS

A database created with V6 supports up to 992Ki blocks and is not backward compatible. V6 databases
that take advantage of V6 limits on key size and records size cannot be downgraded. Use MUPIP
DOWNGRADE -VERSION=V5 to downgrade a V6 database back to V5 format provided it meets
the database downgrade requirements. For more information on downgrading a database, refer to 
Downgrading to V5 or V4.

Important

A V5 database that has been automatically upgraded to V6 can perform all GT.M
V6.3-000 operations. However, that database can only grow to the maximum size
of the version in which it was originally created. A database created on V5.0-000
through V5.3-003 has maximum size of 128Mi blocks. A database created on V5.4-000
through V5.5-000 has a maximum size of 224Mi blocks. Only a database created
with V6.0-000 or above (with a V6 MUPIP CREATE) has a maximum database size of
992Mi blocks.

Important

In order to perform a database downgrade you must perform a MUPIP INTEG -
NOONLINE. If the duration of the MUPIP INTEG will exceed the time allotted for an
upgrade you should rely on a rolling upgrade scheme using replication.

If your database has any previously used but free blocks from an earlier upgrade cycle (V4 to V5),
you may need to execute the MUPIP REORG -UPGRADE command. If you have already executed the
MUPIP REORG -UPGRADE command in a version prior to V5.3-003 and if subsequent versions cannot
determine whether MUPIP REORG -UPGRADE performed all required actions, it sends warnings to
the syslog requesting another run of MUPIP REORG -UPGRADE. In that case, perform any one of the
following steps:

• Execute the MUPIP REORG -UPGRADE command again, or

• Execute the DSE CHANGE -FILEHEADER -FULLY_UPGRADED=1 command to stop the warnings.

Caution

Do not run the DSE CHANGE -FILEHEADER -FULLY_UPGRADED=1 command
unless you are absolutely sure of having previously run a MUPIP REORG -
UPGRADE from V5.3-003 or later. An inappropriate DSE CHANGE -FILEHEADE -
FULLY_UPGRADED=1 may lead to database integrity issues.

You do not need to run MUPIP REORG -UPGRADE on:

• A database that was created by a V5 MUPIP CREATE

• A database that has been completely processed by a MUPIP REORG -UPGRADE from V5.3-003 or
later.

For additional upgrade considerations, refer to Database Compatibility Notes.



Upgrading to GT.M V6.3-000 V6.3-000

GTM V6.3-000
FIS

April 11, 2016, Page 13

To upgrade from a GT.M version prior to V5.000:

You need to upgrade your database files only when there is a block format upgrade from V4 to V5.
However, some versions, for example, database files which have been initially been created with V4
(and subsequently upgraded to a V5 format) may additionally need a MUPIP REORG -UPGRADE
operation to upgrade previously used but free blocks that may have been missed by earlier upgrade
tools.

• Upgrade your database files using in-place or traditional database upgrade procedure depending
on your situation. For more information on in-place/traditional database upgrade, see Database
Migration Technical Bulletin.

• Run the MUPIP REORG -UPGRADE command. This command upgrades all V4 blocks to V5 format.

Note

Databases created with GT.M releases prior to V5.0-000 and upgraded to a V5 format
retain the maximum size limit of 64Mi (67,108,864) blocks.

Database Compatibility Notes

• Changes to the database file header may occur in any release. GT.M automatically upgrades database
file headers as needed. Any changes to database file headers are upward and downward compatible
within a major database release number, that is, although processes from only one GT.M release can
access a database file at any given time, processes running different GT.M releases with the same
major release number can access a database file at different times.

• Databases created with V5.3-004 through V5.5-000 can grow to a maximum size of 224Mi
(234,881,024) blocks. This means, for example, that with an 8KiB block size, the maximum database
file size is 1,792GiB; this is effectively the size of a single global variable that has a region to itself; a
database consists of any number of global variables. A database created with GT.M versions V5.0-000
through V5.3-003 can be upgraded with MUPIP UPGRADE to increase the limit on database file size
from 128Mi to 224Mi blocks.

• Databases created with V5.0-000 through V5.3-003 have a maximum size of 128Mi (134, 217,728)
blocks. GT.M versions V5.0-000 through V5.3-003 can access databases created with V5.3-004 and
later as long as they remain within a 128Mi block limit.

• Database created with V6.0-000 or above have a maximum size of 1,040,187,392(992Mi) blocks.

• For information on downgrading a database upgraded from V6 to V5, refer to: Downgrading to V5 or
V4.

Stage 3: Replication Instance File Upgrade

V6.3-000 does not require new replication instance files if you are upgrading from V5.5-000. However,
V6.3-000 requires new replication instance files if you are upgrading from any version prior to
V5.5-000. Instructions for creating new replication instance files are in the Database Replication chapter

http://tinco.pair.com/bhaskar/gtm/doc/articles/GTM_Database_Migration.html
http://tinco.pair.com/bhaskar/gtm/doc/articles/GTM_Database_Migration.html
http://tinco.pair.com/bhaskar/gtm/doc/books/ao/UNIX_manual/ch07.html


V6.3-000 Upgrading to GT.M V6.3-000

FIS
Page 14, April 11, 2016 FIS

of the GT.M Administration and Operations Guide. Shut down all Receiver Servers on other instances
that are to receive updates from this instance, shut down this instance Source Server(s), recreate the
instance file, restart the Source Server(s) and then restart any Receiver Server for this instance with the
-UPDATERESYNC qualifier.

Note

Without the UPDATERESYNC qualifier, the replicating instance synchronizes with
the originating instance using state information from both instances and potentially
rolling back information on the replicating instance. The UPDATERESYNC qualifier
declares the replicating instance to be in a wholesome state matching some prior (or
current) state of the originating instance; it causes MUPIP to update the information
in the replication instance file of the originating instance and not modify information
currently in the database on the replicating instance. After this command, the
replicating instance catches up to the originating instance starting from its own
current state. Use UPDATERESYNC only when you are absolutely certain that
the replicating instance database was shut down normally with no errors, or
appropriately copied from another instance with no errors.

Important

You must always follow the steps described in the Database Replication chapter of
the GT.M Administration and Operations Guide when migrating from a logical dual
site (LDS) configuration to an LMS configuration, even if you are not changing GT.M
releases.

Stage 4: Journal Files Upgrade

On every GT.M upgrade:

• Create a fresh backup of your database.

• Generate new journal files (without back-links).

Important

This is necessary because MUPIP JOURNAL cannot use journal files from a release
other than its own for RECOVER, ROLLBACK, or EXTRACT.

Stage 5: Trigger Definitions Upgrade

If you are upgrading from V5.4-002A/V5.4-002B/V5.5-000 to V6.3-000 and you have database triggers
defined in V6.2-000 or earlier, you need to ensure that your trigger definitions are wholesome in the
older version and then run MUPIP TRIGGER -UPGRADE. If you have doubts about the wholesomeness
of the trigger definitions in the old version use the instructions below to capture the definitions delete

http://tinco.pair.com/bhaskar/gtm/doc/books/ao/UNIX_manual/ch07.html


Upgrading to GT.M V6.3-000 V6.3-000

GTM V6.3-000
FIS

April 11, 2016, Page 15

them in the old version (-*), run MUPIP TRIGGER -UPGRADE in V6.3-000 and then reload them as
described below.

You need to extract and reload your trigger definitions only if you are upgrading from V5.4-000/
V5.4-000A/V5.4-001 to V6.3-000 or if you find your prior version trigger definitions have problems.
For versions V5.4-000/V5.4-000A/V5.4-001 this is necessary because multi-line XECUTEs for triggers
require a different internal storage format for triggers which makes triggers created in V5.4-000/
V5.4-000A/V5.4-001 incompatible with V5.4-002/V5.4-002A/V5.4-002B/V5.5-000/V6.0-000/V6.0-001/
V6.3-000.

To extract and reapply the trigger definitions on V6.3-000 using MUPIP TRIGGER:

1. Using the old version, execute a command like mupip trigger -select="*" trigger_defs.trg. Now,
the output file trigger_defs.trg contains all trigger definitions.

2. Place -* at the beginning of the trigger_defs.trg file to remove the old trigger definitions.

3. Using V6.3-000, run mupip trigger -triggerfile=trigger_defs.trg  to reload your trigger
definitions.

To extract and reload trigger definitions on a V6.3-000 replicating instance using $ZTRIGGER():

1. Shut down the instance using the old version of GT.M.

2. Execute a command like mumps -run %XCMD 'i $ztrigger("select")' > trigger_defs.trg . Now,
the output file trigger_defs.trg contains all trigger definitions.

3. Turn off replication on all regions.

4. Run mumps -run %XCMD 'i $ztrigger("item","-*")  to remove the old trigger definitions.

5. Perform the upgrade procedure applicable for V6.3-000.

6. Run  mumps -run %XCMD 'if $ztrigger("file","trigger_defs.trg")' to reapply your trigger
definitions.

7. Turn replication on.

8. Connect to the originating instance.

Note

Reloading triggers renumbers automatically generated trigger names.

Downgrading to V5 or V4

You can downgrade a GT.M V6 database to V5 or V4 format using MUPIP DOWNGRADE.

Starting with V6.0-000, MUPIP DOWNGRADE supports the -VERSION qualifier with the following
format:



V6.3-000 Managing M mode and UTF-8 mode

FIS
Page 16, April 11, 2016 FIS

MUPIP DOWNGRADE -VERSION=[V5|V4] 

-VERSION specifies the desired version for the database header.

To qualify for a downgrade from V6 to V5, your database must meet the following
requirements:

1. The database was created with a major version no greater than the target version.

2. The database does not contain any records that exceed the block size (spanning nodes).

3. The sizes of all the keys in database are less than 256 bytes.

4. There are no keys present in database with size greater than the Maximum-Key-Size specification
the database header, that is, Maximum-Key-Size is assured.

5. The maximum Record size is small enough to accommodate key, overhead, and value within a block.

To verify that your database meets all of the above requirements, execute MUPIP INTEG -NOONLINE.
Note that the integrity check requires the use of -NOONLINE to ensure no concurrent updates
invalidate the above requirements. Once assured that your database meets all the above requirements,
MUPIP DOWNGRADE -VERSION=V5 resets the database header to V5 elements which makes it
compatible with V5 versions.

To qualify for a downgrade from V6 to V4, your database must meet the same downgrade requirements
that are there for downgrading from V6 to V5.

If your database meets the downgrade requirements, perform the following steps to downgrade to V4:

1. In a GT.M V6.3-000 environment:

a. Execute MUPIP SET -VERSION=v4 so that GT.M writes updates blocks in V4 format.

b. Execute MUPIP REORG -DOWNGRADE to convert all blocks from V6 format to V4 format.

2. Bring down all V6 GT.M processes and execute MUPIP RUNDOWN -FILE on each database file to
ensure that there are no processes accessing the database files.

3. Execute MUPIP DOWNGRADE -VERSION=V4 to change the database file header from V6 to V4.

4. Restore or recreate all the V4 global directory files.

5. Your database is now successfully downgraded to V4.

Managing M mode and UTF-8 mode

On selected platforms, with International Components for Unicode (ICU) version 3.6 or later installed,
GT.M's UTF-8 mode provides support for Unicode (ISO/IEC-10646) character strings. On other
platforms, or on a system that does not have ICU 3.6 or later installed, GT.M only supports M mode.

On a system that has ICU installed, GT.M optionally installs support for both M mode and UTF-8
mode, including a utf8 subdirectory of the directory where GT.M is installed. From the same source

http://icu-project.org


Managing M mode and UTF-8 mode V6.3-000

GTM V6.3-000
FIS

April 11, 2016, Page 17

file, depending upon the value of the environment variable gtm_chset, the GT.M compiler generates
an object file either for M mode or UTF-8 mode. GT.M generates a new object file when it finds both
a source and an object file, and the object predates the source file and was generated with the same
setting of $gtm_chset/$ZCHset. A GT.M process generates an error if it encounters an object file
generated with a different setting of $gtm_chset/$ZCHset than that processes' current value.

Always generate an M object module with a value of $gtm_chset/$ZCHset matching the value
processes executing that module will have. As the GT.M installation itself contains utility programs
written in M, their object files also conform to this rule. In order to use utility programs in both
M mode and UTF-8 mode, the GT.M installation ensures that both M and UTF-8 versions of object
modules exist, the latter in the utf8 subdirectory. This technique of segregating the object modules by
their compilation mode prevents both frequent recompiles and errors in installations where both modes
are in use. If your installation uses both modes, consider a similar pattern for structuring application
object code repositories.

GT.M is installed in a parent directory and a utf8 subdirectory as follows:

• Actual files for GT.M executable programs (mumps, mupip, dse, lke, and so on) are in the parent
directory, that is, the location specified for installation.

• Object files for programs written in M (GDE, utilities) have two versions - one compiled with support
for Unicode in the utf8 subdirectory, and one compiled without support for Unicode in the parent
directory. Installing GT.M generates both versions of object files, as long as ICU 3.6 or greater is
installed and visible to GT.M when GT.M is installed, and you choose the option to install Unicode
support. Note that on 64-bit versions of GT.M, the object code is in shared libraries, rather than
individual files in the directory.

• The utf8 subdirectory has files called mumps, mupip, dse, lke, and so on, which are relative symbolic
links to the executables in the parent directory (for example, mumps is the symbolic link ../mumps).

• When a shell process sources the file gtmprofile, the behavior is as follows:

• If $gtm_chset is "m", "M" or undefined, there is no change from the previous GT.M versions to the
value of the environment variable $gtmroutines.

• If $gtm_chset is "UTF-8" (the check is case-insensitive),

• $gtm_dist is set to the utf8 subdirectory (that is, if GT.M is installed in /usr/lib/fis-gtm/
gtm_V6.3-000_i686, then gtmprofile sets $gtm_dist to /usr/lib/fis-gtm/gtm_V6.3-000_i686/utf8).

• On platforms where the object files have not been placed in a libgtmutil.so shared library,
the last element of $gtmroutines is $gtm_dist($gtm_dist/..) so that the source files in the
parent directory for utility programs are matched with object files in the utf8 subdirectory. On
platforms where the object files are in libgtmutil.so, that shared library is the one with the object
files compiled in the mode for the process.

For more information on gtmprofile, refer to the Basic Operations chapter of GT.M Administration and
Operations Guide.

Although GT.M uses ICU, ICU is not FIS software and FIS does not support ICU.

http://tinco.pair.com/bhaskar/gtm/doc/books/ao/UNIX_manual/ch03.html


V6.3-000 Setting the environment variable TERM

FIS
Page 18, April 11, 2016 FIS

Setting the environment variable TERM

The environment variable TERM must specify a terminfo entry that accurately matches the terminal
(or terminal emulator) settings. Refer to the terminfo man pages for more information on the terminal
settings of the platform where GT.M needs to run.

• Some terminfo entries may seem to work properly but fail to recognize function key sequences or
fail to position the cursor properly in response to escape sequences from GT.M. GT.M itself does
not have any knowledge of specific terminal control characteristics. Therefore, it is important to
specify the right terminfo entry to let GT.M communicate correctly with the terminal. You may need
to add new terminfo entries depending on your specific platform and implementation. The terminal
(emulator) vendor may also be able to help.

• GT.M uses the following terminfo capabilities. The full variable name is followed by the capname in
parenthesis:

auto_right_margin(am), clr_eos(ed), clr_eol(el), columns(cols), cursor_address(cup),
 cursor_down(cud1), cursor_left(cub1), cursor_right(cuf1), cursor_up(cuu1),
 eat_newline_glitch(xenl), key_backspace(kbs), key_dc(kdch1),key_down(kcud1),
 key_left(kcub1), key_right(kcuf1), key_up(kcuu1), key_insert(kich1),
 keypad_local(rmkx),keypad_xmit(smkx), lines(lines).

GT.M sends keypad_xmit before terminal reads for direct mode and READs (other than READ *) if
EDITING is enabled. GT.M sends keypad_local after these terminal reads.

Installing Compression Libraries

If you plan to use the optional compression facility for replication, you must provide the compression
library. The GT.M interface for compression libraries accepts the zlib compression libraries without
any need for adaptation. These libraries are included in many UNIX distributions and are downloadable
from the zlib home page. If you prefer to use other compression libraries, you need to configure or
adapt them to provide the same API provided by zlib.

If a package for zlib is available with your operating system, FIS suggests that you use it rather than
building your own.

By default, GT.M searches for the libz.so shared library in the standard system library directories (for
example, /usr/lib, /usr/local/lib, /usr/local/lib64). If the shared library is installed in a non-standard
location, before starting replication, you must ensure that the environment variable LIBPATH (AIX)
or LD_LIBRARY_PATH (GNU/Linux) includes the directory containing the library. The Source and
Receiver Server link the shared library at runtime. If this fails for any reason (such as file not found,
or insufficient authorization), the replication logic logs a DLLNOOPEN error and continues with no
compression.

http://www.zlib.net


GT.M V6.3-000
FIS

April 11, 2016, Page 19

Change History

V6.3-000

Fixes and enhancements specific to V6.3-000 are:

Id Prior Id Category Summary

GTM-5007 C9D07-002329 Admin MUPIP JOURNAL parallelization option,
sorted lost and broken transaction files,
and change in default of -verify 

GTM-5726 S9F07-002557 Admin See GTM-7768

GTM-6114 C9I01-002943 Language ZMESSAGE handles indirection

GTM-6301 C9I12-003057 DB Cleaner and quicker database cleanup on
process exit

GTM-6310 C9I12-003066 Admin Change database file encryption keys "on
the fly" while databases are in use 

GTM-6317 C9J01-003070 Admin See GTM-8137

GTM-6388 C9J05-003131 Admin MUPIP EXTRACT and MUPIP JOURNAL -
EXTRACT performance improvement

GTM-6858 S9L07-002825 Admin Building ICU on AIX no longer required 

GTM-6928 - Admin ZEROBACKLOG qualifier to shut down
Source Server when backlog is zero 

GTM-7060 - Language Better behavior when a USE command puts
$X beyond WIDTH 

GTM-7199 - Other DSE ALL -CLEARCORRUPT clears the
CORRUPT flag on all regions

GTM-7291 - Admin MUPIP JOURNAL -ROLLBACK -
FORWARD and enhancements to MUPIP
JOURNAL -ROLLBACK -BACKWARD 

GTM-7375 - Admin More tolerant ICU specification 

GTM-7604 - Language $ZWRITE() can go from, as well as to,
ZWRITE format 

GTM-7608 - DB Processes with read-only access leave
shared memory intact for databases not
shutdown in an orderly fashion

#GTM-7768
#GTM-8137


Change History V6.3-000

FIS
Page 20, April 11, 2016 FIS

Id Prior Id Category Summary

GTM-7658 - Other Enhancements and fixes to ^%RI utility 

GTM-7762 - Language Compiler evaluation of some operations
and functions containing string literals 

GTM-7768 - Admin Improved Source Server communication
management

GTM-7809 - Admin Addition critical section tuning options 

GTM-7831 - Admin Online Rollback avoids inappropriate
Instance Freeze on DBDANGER

GTM-7838 - Admin Replication Flow Control adjustment

GTM-8009 - Other Prevent inappropriate file sharing after
process creation

GTM-8020 - Admin MUPIP LOAD accepts unquoted negative
values

GTM-8022 - Other ^%GI accepts records up to the maximum
string length 

GTM-8028 - Other Encryption plugin loads correctly for
UTF-8 mode processes with standard GT.M
installation directory structure

GTM-8034 - Language On the JOB command, enable naming of
both output and error when appending
JOBPID 

GTM-8038 - Language $ZCONVERT(...,"T") works in M mode

GTM-8076 - Other Journal Pool Recovery

GTM-8112 - Language Appropriate handling by the ZSYSTEM
command of a very long SHELL
environment variable

GTM-8117 - DB Better initialization vector available for
encrypted databases 

GTM-8137 - Admin Allowing more than 32Ki processes to
access the database and journal pool 

GTM-8190 - DB Optional logging of non-tp restart conflicts

GTM-8215 - Language $ZCONVERT() raises ICUERROR if ICU
library is unavailable



V6.3-000 Change History

GTM V6.3-000
FIS

April 11, 2016, Page 21

Id Prior Id Category Summary

GTM-8223 - Admin MUPIP LOAD recognizes a wider range of
labels and also DOS-formated records 

GTM-8225 - Admin GT.M uses the default zlib on AIX 

GTM-8296 - Language Version-agnostic invocation of $ZPEEK()
with ^%PEEKBYNAME wrapper 

GTM-8297 - Language JOBLVN2LONG message contains length
information

GTM-8302 - Language TLS Socket renegotiation and other
features for server implementation 

GTM-8326 - Admin Allow journal pool size to be greater than
2GB

GTM-8336 - DB Performance improvement initializing
encryption for databases with multiple
encrypted regions

GTM-8340 - DB Receiver, Update Process, and Update
Writer Helper Improvements 

GTM-8342 - Admin Better MUPIP TRIGGER delete
confirmation interaction 

GTM-8352 - Language Improved UTF-8 character handling for
$EXTRACT() and $FIND() 

GTM-8361 - Admin Reference implementation of encryption
plugin included only as source code 

GTM-8389 - Language Source references in triggers outside of
explicit TP use any available cached source

GTM-8394 - Admin Add robustness to ROLLBACK/RECOVER
for an operationally odd case

GTM-8395 - Other Restore patience for startup of gtmsecshr

GTM-8397 - Language Ensure proper delivery of any process
termination messages

GTM-8399 - DB Better deletion of malformed trigger
representations

GTM-8403 - Other The %MPIECE utility NEWs all local
variables



Change History V6.3-000

FIS
Page 22, April 11, 2016 FIS

Id Prior Id Category Summary

GTM-8404 - Language Calls to $TEXT() that are known at compile
time are treated as literal strings 

GTM-8407 - Language Correct indirection for ZSHOW

GTM-8410 - Admin Fix Source Server journal switch race

GTM-8416 - Other Better alignment of $HOROLOG and
journal time stamps

GTM-8417 - Language Fix for ZPRINT edge case involving
triggers, indirection and source file
instability

GTM-8420 - Admin See GTM-7658

GTM-8421 - Admin Receiver Server started with -autorollback
continues when an online rollback does not
change the state of the database

GTM-8422 - Admin See GTM-6388

GTM-8423 - Admin The Receiver Server appropriately handles
transactions larger than 2MiB

GTM-8425 - Admin Fix an evil interaction between the Update
Process and Online Rollback

GTM-8428 - Admin MUPIP INTEG correctly reports large
values for things it counts

GTM-8429 - Other Correction to open source builds

GTM-8431 - Language $TEXT() accepts ^GTM$DMOD and ^GTM
$CI as arguments

GTM-8433 - Language ZSHOW expr:gvn output format change
and ^%ZSHOWVTOLCL utility 

GTM-8435 - Language Prevent a possible hang due to an
externally initiated termination

GTM-8440 - Language Fix to handling of over-long device names

GTM-8441 - Other gtminstall script qualifier fixes

GTM-8443 - Admin Fix epoch taper rare edge case

GTM-8448 - Language Better handling of MUPIP STOPs

GTM-8450 - Language Prevent time overflows in $ZGETJPI()

GTM-8457 - DB Fix for an edge case in trigger delete

#GTM-7658
#GTM-6388


V6.3-000 Change History

GTM V6.3-000
FIS

April 11, 2016, Page 23

Id Prior Id Category Summary

GTM-8458 - Other Address possible mis-ordering of DSE
output

GTM-8461 - Admin Source Server reliably updates the resync
sequence number in the replication
instance file

GTM-8464 - Admin MUPIP EXTRACT on encrypted database
creates valid binary extract files regardless
of mapping

GTM-8465 - Language JOB with PASSCURLVN appropriately
handles alias containers containing KILL'd
alias variables

GTM-8468 - Admin Improved Source Server management of
journal files

GTM-8470 - Admin See GTM-7831

GTM-8471 - Other gtmsecshr does not trigger false
ARCTLMAXLOW warnings

GTM-8475 - Language Prevent a case where $ZSEARCH() could
hang indefinitely

GTM-8476 - Language Fix for error handling in triggers on
spanning nodes or spanning regions

GTM-8477 - Language GT.M no longer issues an inappropriate
TLVLZERO error

GTM-8478 - Admin "Sending REPL_RENEG_COMPLETE" in
Source Server log file

GTM-8479 - Admin MUPIP REORG really does respond to
gtm_poollimit

GTM-8480 - Admin Minimize size of result from MUPIP
BACKUP -DATABASE 

GTM-8481 - Admin MUPIP INTEG handles a flood of
DBTNTOOLG errors from the same global
correctly

GTM-8483 - Language MUPIP JOURNAL -EXTRACT leaves
journal files in a wholesome state

GTM-8484 - Language M compilations, trigger compilations, and
online integrity checks no longer SIG-11 in
rare cases

#GTM-7831


Change History V6.3-000

FIS
Page 24, April 11, 2016 FIS

Id Prior Id Category Summary

GTM-8485 - Admin MUPIP JOURNAL correctly issues
FILEPARSE errors for invalid paths

GTM-8486 - Language ZROSYNTAX errors do not cause
segmentation violations

GTM-8487 - Admin No more inappropriate REPLINSTMATCH
errors

GTM-8489 - DB Prevent inappropriate Source Sever
termination

GTM-8490 - Language VIEW command does not accept 0 and 1 as
arguments

GTM-8491 - Language Improved $ZSEARCH on AIX for non-
wildcard searches

GTM-8494 - Admin Better maintenance of an Instance file by
MUPIP BACKUP and MUPIP REPLIC

GTM-8495 - Other Improve DSE key interpretation of
damaged blocks under some circumstances

GTM-8499 - DB Unusual sequence of KILLs does not result
in process termination with SIG-11

GTM-8500 - DB Deadlock recovery for the internal locks

GTM-8501 - DB Fix for NOCHLEFT error during process
shutdown

GTM-8502 - Admin MUPIP standalone commands use the same
caution as MUPIP RUNDOWN 

GTM-8506 - DB Prevent trigger problem from causing a
deadlock

GTM-8507 - Admin Fix rare case that inappropriately
terminated replication between two SI
nodes

GTM-8511 - Other Allow DSE to map resource even if they
don't match the file header

GTM-8512 - Language JOB command uses $zgbldir as the default
value for the command parameter GBLDIR

GTM-8514 - Other −−xec is optional for %XCMD



GT.M V6.3-000
FIS

April 11, 2016, Page 25

Database

•  Processes execute substantially less logic when exiting database files opened with the BG access
method. Previously process exit involved more checking, which could significantly slow the exit and
consume CPU resources potentially usable by other processes, behavior which was most visible when
a large number of processes concurrently attempted to exit databases with large numbers of regions
and large numbers of global buffers per region. (GTM-6301)

•  A process with read-only access run on an otherwise unaccessed database that was not shutdown in
an orderly fashion, due to for example a kill -9, attached processes exceeding 32Ki, etc., leaves shared
memory intact. Previously, such a process could cause the loss of the shared resource and, under
some circumstances, updates it contained. (GTM-7608)

•  GT.M uses non-zero, context-sensitive, initialization vectors (IVs) when it encrypts or decrypts
databases, journal files, binary extracts and bytestream backups; previously it used empty (all zeros
or "NULL_IV") initialization vectors.

MUPIP EXTRACT -FORMAT=BIN accepts a -NULL_IV qualifier and generates extracts in the
following formats:

• Level 6 for extracts that include no encrypted region (i.e., no data in the extract is encrypted). This
is unchanged from prior releases.

• Level 8 for extracts that include at least one encrypted region (i.e., some or all data is encrypted),
and the extract was generated either (a) with the -NULL_IV flag, or (b) from database regions
that are encrypted with null IVs, to generate a file with null IVs. MUPIP LOAD from GT.M
V6.2-002/-002A can load level 8 extracts (but see the discussion of GTM-8360 in the V6.2-002
release notes on extracts that mixed encrypted and unencrypted regions in GT.M releases prior to
V6.2-002)

• Level 9 for extracts that include at least one encrypted region, and the extract uses IVs - i.e.,
MUPIP LOAD only from V6.3-000 and future releases will be able to accept this format.

MUPIP BACKUP -BYTESTREAM in V6.3-000 uses level format 8 for an encrypted region and level
format 9 for an unencrypted one (i.e., the first 5 characters of the label are "GDSV8" or "GDSV9",
respectively). Bytestream backups created from a database with a particular minor version can only
be restored onto a database with the same minor version. In case of a minor version mismatch GT.M
issues the MUPRESTERR error with a descriptive addendum.

Journal and database file header dumps, produced using MUPIP JOURNAL -SHOW=HEADER and
DSE DUMP -FILE -ALL, respectively, report whether an all-zero IV (NULL_IV) is in use.

Additionally, ZSHOW "D" displays the name of the encryption key and IV type for each file device
that has its input, output, or both streams using encryption.

Please note:



Database

FIS
Page 26, April 11, 2016 FIS

• For databases created with prior versions that used an all-zero IV, GT.M continues to provide an
empty IV for database blocks and journal records (see the release note for GTM-6310 on upgrading
to non-zero IVs).

• To downgrade a database that uses non-zero IVs to a database that uses zero IVs, extract the
contents with MUPIP EXTRACT and use MUPIP LOAD to load the contents into a database
created with a prior GT.M version that uses zero IVs. If the MUPIP LOAD targets a prior version of
GT.M, the extract needs to either specify FORMAT=ZWR or FORMAT=BIN -NULL_IV.

• While GT.M releases that provide non-zero IVs can use databases from versions of GT.M that use
zero IVs, prior versions of GT.M that use zero IVs cannot process files that have non-zero IVs (e.g.,
while MUPIP LOAD can process binary extracts in the prior GDS level 8 format, previous GT.M
versions cannot process GDS level format 9 binary extracts).

(GTM-8117) 

•  The gtm_nontprestart_log_delta and gtm_nontprestart_log_first environment variables control
whether and how GT.M sends to the syslog NONTPRESTART messages that supply information
on non-TP "mini transaction" restarts. If $gtm_nontprestart_log_delta is a non-zero integer, GT.M
uses the value as a sampling interval for the messages, so a value of one (1) produces a report
for every non-TP restart, a value of two (2) means a report for every other non-TP restart, etc. If
$gtm_nontprestart_log_delta is defined as described and $gtm_nontprestart_log_first is also a non-
zero integer, GT.M reports the first $gtm_nontprestart_log_first non-TP restarts before reporting
samples as defined by $gtm_nontprestart_log_delta. Previously, GT.M did not provide detailed
information for non-TP mini-transactions, but it did provide cumulative restart non-TP mini-
transaction restarts using the NR0, NR1, NR2, NR3 fields in the ZSHOW "G" output. In addition, if
the restart occurs due to a conflict in the global directory tree, the TPRESTART message reports
"*DIR" for the glbl field. Previously, in that case, it displayed only "^" with no global variable name.
TPRESTART messages include the subscript of the contested global. Previously, it reported global
names without any subscript information. VIEW [NO]LOGN[ONTP][:intexpr] allows a process to
dynamically change the logging to the syslog of NONTPRESTART messages established at process
startup by the environment variables gtm_nontprestart_log_delta and gtm_nontprestart_log_first.
VIEW "NOLOGNONTP" turns off the logging of NONTPRESTART messages to the syslog. VIEW
"LOGNONTP"[:intexpr] turns on logging of NONTPRESTART messages to the syslog. If no intexpr
is specified, GT.M uses the value of environment variable gtm_nontprestart_log_delta, if it is defined,
and one (1) otherwise (that is, log every transaction restart). A negative value of intexpr turns off
the logging of NONTPRESTART messages. Note that it is not possible to perform the operations of
gtm_nontprestart_log_first with VIEW "LOGNONTP"[:intexpr]. (GTM-8190) 

•  Encryption initialization is faster for databases with multiple encrypted regions, with the
improvement more noticeable as the number of regions increases. To facilitate this performance
improvement, GT.M requires the encryption configuration file (referred to by $gtmcrypt_config) to
specifically associate the key used by each database file with that database file name, raising an error
if an entry mapping the key to the file does not exist. Previously, GT.M accepted any key with a hash
matching that in the database file header, even a key that was not specifically mapped to a database
file name that used it. This enhancement benefits from changes to the API of the encryption plugin.
(GTM-8336)

#GTM-6310


Database

GTM V6.3-000
FIS

April 11, 2016, Page 27

•  Update helper writer processes increase replication throughput, decrease backlog, and improve
manageability:

• Update writer helper processes start flush timers, participate in epoch tapering, and perform timed
epochs. Previously writer helpers only flushed dirty blocks.

• The Update Process no longer starts or restarts flush timers on a database if there is another
process with a timer, e.g. an update writer helper. Previously the Update Process typically would
establish a timer, preempting writer helpers from performing them.

• The Receiver Server actively notifies the Update Process when there is work to be done. Previously
the update process periodically polled for updates when the receive pool backlog reached zero,
potentially leading to short periods where the backlog increased.

• MUPIP REPLICATE -RECEIVER -SHUTDOWN shuts down update helper processes left running
after the receiver shutdown abnormally. Previously a prior MUPIP REPLICATE -RECEIVER -
SHUTDOWN -HELPERS was required to terminate each such process.

(GTM-8340) 

•  $ZTRIGGER() and MUPIP TRIGGER delete all, "-*", operations delete malformed trigger records,
identifying such malformed trigger records with TRIGDEFBAD warnings. Previously trigger
delete ignored some malformed triggers making them undeletable. In some cases, attempts to view
(SELECT) these malformed triggers failed, making them invisible as well. The workaround was to
extract all triggers to a file, add a trigger for each global variable with a trigger, followed by a delete
all, "-*". This deleted all triggers and restored the desired triggers in one transaction. (GTM-8399)

•  $ZTRIGGER()and MUPIP TRIGGER appropriately delete triggers as specified; previously under rare
circumstances, they silently failed to do so. This issue was only observed in the GT.M development
environment, and was never reported by a user. (GTM-8457)

•  Processes that have read-write access to a journaled database file, but have not yet performed any
updates to it (i.e., processes that have not yet opened the journal file for that database file), cooperate
correctly with processes that have read-write access and have performed updates. Previously, it
was possible for the former to pick up all available slots for flushing dirty buffers (the default being
two slots), resulting in an out-of-design situation where dirty buffers did not get flushed in a timely
manner, in turn resulting in the Source Server terminating with a SEQNUMSEARCHTIMEOUT error.
Additionally, the Source Server issues an alert every 50 seconds (instead of 10 seconds previously).
(GTM-8489)

•  KILL of a global outside of a TP transaction following a large TP transaction with certain
characteristics by the same process works correctly; previously this unusual sequence could
terminate a process with a segmentation violation (SIG-11). Database structural integrity was not at
risk from this behavior. (GTM-8499)

•  GT.M does not internally deadlock in the presence of certain rare, asynchronous events, as it
previously could in releases V6.0-003 through V6.2-002A. This issue was only observed in the GT.M
development environment, and was never reported by a user. Note that the design of GT.M precludes
deadlocks in normal usage. (GTM-8500)



Database

FIS
Page 28, April 11, 2016 FIS

•  MUPIP, LKE, and DSE no longer issue NOCHLEFT fatal errors while handling errors in database
disconnect which occur during process shutdown. (GTM-8501)

•  GT.M processes no longer deadlock when a trigger causes a fatal error, under certain unusual
conditions. This issue was only observed in the GT.M development environment, and was never
reported by a user. (GTM-8506)



GT.M V6.3-000
FIS

April 11, 2016, Page 29

Language

•  ZMESSAGE accepts an indirect argument. Previously this syntax produced a GTMASSERT.
(GTM-6114)

•  In an M mode process, a WRITE to a sequential device after a SET $X to a value greater than the
device WIDTH or a reduction in WIDTH to less than the current $X acts as if the first character
caused $X to exceed the WIDTH inducing an immediate WRAP, if WRAP is enabled. Previously, $X
exceeding WIDTH in an M mode process caused a SYSTEM-E-ENO14, Bad address error. (GTM-7060)

•  $ZWRITE() accepts a second intexpr which specifies the direction of the conversion. No value or
a zero value converts the first argument to ZWRITE format and a non-zero value converts the first
argument from ZWRITE format to a string with embedded non-graphic characters. In addition,
$ZWRITE() now takes the cannonical or non-cannonical nature of its first argument into account;
previously it attempted to treat non-canonical numeric values as numbers rather than strings, which
caused errors and inappropriate results. Also if all its arguments are literals, $ZWRITE() evaluates to
a literal constant at compile time. Previously $ZWRITE only accepted a single argument, converting
only to ZWRITE format, and always evaluated at run time. (GTM-7604) 

•  The GT.M compiler resolves some expressions involving string literals at compile time, reducing
both code size and run time CPU requirements. Currently the compiler does this for concatenation
operations, $[Z]ASCII(), $[Z]EXTRACT(), $[Z]PIECE(), and $ZSUBSTR(). For code compiled in
UTF-8 mode, this means that the compiler can report BADCHAR warnings for strings that are
not legal UTF-8 strings, where previously it did not. The compiler flags these as warnings, rather
than as errors, since the possible difference between the compile time and run time setting of
[NO]BADCHAR dictates that the compiler cannot with certainty determine whether strings
containing illegal UTF-8 characters are actually errors (for example, they may contain binary data).
When the compiler reports BADCHAR warnings, it defers the computation to run time, instead
of attempting to precompute the result. Note that sometimes a single character with an invalid
encoding can cause multiple warnings, for example, when a string that is not a valid UTF-8 string
appears inside a function such as $PIECE(). Regardless of any compile time warnings, there is no
change to run time functionality of any M application code as a result of this change. (GTM-7762) 

•  Using VIEW "JOBPID":1 does not issue an error when the JOB command parameters ERROR
and OUTPUT point to the same file; previously, while the effect of the VIEW command was not
documented, using the same file name for ERROR and OUTPUT and VIEW "JOBPID":1 resulted in an
error. (GTM-8034) 

•  $ZCONVERT(...,"T") works in M mode; previously it only worked in UTF-8 mode. (GTM-8038)

•  Processes no longer terminate with a segmentation violation (SIG-11) when:

• executing the ZSYSTEM command with an overly long value of the environment variable SHELL;
and



Language

FIS
Page 30, April 11, 2016 FIS

• initializing the reference implementation of the encryption plugin with an overly long value of the
environment variable GNUPGHOME.

These issues were only observed in the GT.M development environment, and were never reported by
a user. (GTM-8112)

•  $ZCONVERT() raises an ICUERROR if GT.M is unable to correctly access the ICU library; previously
the process terminated with a GTMASSERT. It also runs faster than it did previously. (GTM-8215)

• %PEEKBYNAME() provides a stable interface to $ZPEEK() that uses control structure field
mnemonics. $ZPEEK() provides a read-only mechanism to access selected fields in selected control
structures in the address space of a process, including process private memory, database shared
memory segments and Journal Pools. Although application code can call $ZPEEK() directly, such
direct access must use numeric arguments that can vary from release to release. Access using
%PEEKBYNAME makes application code more stable across GT.M releases. For more information,
refer to Additional Information forGTM-8296- %PEEKBYNAME(). (GTM-8296) 

•  If the JOB command finds the ZWRITE representation of an lvn consisting of a its full name,
its subscripts, corresponding value, quotes and the "=" sign, exceeding 1MiB, it produces a
JOBLVN2LONG error in both JOB'ing and JOB'd process' error stream. This message includes the
attempted length and maximum limit. Previously, the JOB'ing process would issue a JOBLVN2LONG
error without the lvn length details, and JOB'd process would issue a JOBLVNDETAIL with the
length information which the JOBLVN2LONG currently displays. (GTM-8297)

•  The WRITE /TLS("renegotiate"[,,[tlsid][,,options]]) command on a server socket allows applications
to request a TLS renegotiation. In the command:

• The second and fourth arguments are unspecified.

• tlsid refers to the name of a section in the configuration file specified by the gtmcrypt_config
environment variable. If tlsid is not specified, GT.M creates a virtual section by appending "-
RENEGOTIATE" to the tlsid used to enable TLS on the socket. If no section named tlsid is present
in the configuration file, GT.M creates a virtual section with that name for the life of the process.

• Supported configuration file options passed in the command are (case-sensitive): verify-depth,
verify-level, verify-mode, session-id-hex, and CAfile.

• When tlsid is specified, any options in the command take precedence over options of the same
name specified in the configuration file section.

The WRITE /TLS("renegotiate",...) command ignores options other than those listed above. The
options remain in effect for the socket after the renegotiation. Any virtual section remains available
in the current process.

Renegotiation requires the suspension of application communication and the application must
read all pending data before initiating a renegotiation. This means that in the communication
protocol used, both parties must be at a known state when renegotiating keys. For example, in



Language

GTM V6.3-000
FIS

April 11, 2016, Page 31

GT.M replication, one party sends a renegotiation request and waits for an acknowledgement before
initiating the renegotiation.

The configuration file can specify options, although the WRITE /TLS("renegotiate",...) command
can override them. Note that configuration file options may be useful even without the renegotiate
command.

• The CAfile option when specified for a server connection either in a tlsid level configuration
file section or for the renegotiate command allows the server to inform the client of acceptable
certificate authorities via the OpenSSL function SSL_set_client_CA_list(). The determinant
definition for the acceptable list of certificate authorities sent to the client comes in descending
order of priority from the one specified by the WRITE /TLS("renegotiate",...) command, the one
specified by the CAfile value in the tlsid section used to establish the TLS connection, and finally
that specified at the tls level.

• The verify-level option takes a string value to specify any additional certificate verification in
addition to the basic OpenSSL verification. The only value currently accepted is "CHECK" which
requests additional checks on the results of the basic OpenSSL certificate verification. A leading
exclamation mark ("!") disables a verify-level option. The verify-level options specified at lower
levels are merged with those options already specified at higher levels. CHECK is enabled by
default for all TLS connections.

• The session-id-hex option takes a string value which is used to set the SSL session_id context
for server sockets, which may be specified in the tlsid section of a config file or on WRITE /
TLS("RENEGOTIATE",...). See the OpenSSL man page for SSL_set_session_id_context for usage
details. The value should consist of hexadecimal digits representing the desired value. Application
code can call the %UTF2HEX utility routine to translate a character string to the corresponding
string of hexadecimal digits. If neither the command or the associated tlsid section in the
configuration file specify a session-id-hex option when creating the socket, GT.M uses the current
tlsid, translated into hexadecimal digits.

The default for the configuration file option verify-mode is SSL_VERIFY_PEER. Previously it was
SSL_VERIFY_NONE for TLS enabled sockets.

Including "SESSION" in the fourth argument of $ZSOCKET "TLS" returns information related to SSL
sessions including information about renegotiations. The following is an example of the information
returned in addition to the information previously returned:

|S:RENSEC:1,RENTOT:1,SESSID:A9EB18B4731B2E4ABA572C8386213
4C67C9561597D5FAF47CDD5B866B77215FF,SESEXP:Thu Jun  4 21:07:11 2015

where "|S:" denotes this piece contains session information, "RENSEC:" indicates whether secure
renegotiation is available (1) or not (0), "RENTOT:" gives the current total number of renegotiations
done on this socket, "SESSID:" shows the session id in hexadecimal, and "SESEXP:" indicates when
the session expires in the local timezone.



Language

FIS
Page 32, April 11, 2016 FIS

Including "OPTIONS" in the fourth argument of $ZSOCKET "TLS" now returns the verify mode after
the TLS options (that is, "|O:hexdigits") as a comma and two hexadecimal digits. The verify mode
values are defined in openssl/ssl.h.

Including "ALL" in the fourth argument of $ZSOCKET "TLS" returns all available information.

A successful WRITE for a TLS enabled socket with an argument larger than the ZBFSIZE for the
socket is not considered an error. Previously, such a WRITE indicated an error with the following
$DEVICE value: "1,Unknown error -1" or if IOERROR="TRAP", $ZSTATUS included:

%GTM-E-SOCKWRITE, Write to a socket failed,%GTM-I-TEXT, Unknown error -1

(GTM-8302) 

• To improve performance of certain UTF-8 string functions, when a string 32-bytes or longer
is passed as the first parameter to $EXTRACT() and $FIND() calls that have three parameters,
GT.M caches information regarding transitions between blocks of ASCII characters ($CHAR(0)
through $CHAR(127)) and non-ASCII UTF-8 characters ($CHAR(128) & up). Actual improvement in
application performance can range from unobservable to dramatic depending on the prevalence of
this use case. As there are a couple of tuning parameters for this optimization (with defaults that are
reasonable in our judgement), if you have code that benefits from this optimization, please contact
your GT.M support channel for help in experimenting with the tuning the parameters. (GTM-8352) 

•  When a process accesses a trigger definition with ZPRINT or $TEXT() outside of a TP transaction
and it has previously fetched the definition with no intervening execution of a revised trigger
definition, GT.M returns information cached by that prior access. Previously, if another process had
deleted or modified the definition after its last source access and with no intervening execution,
ZPRINT gave a TRIGNAMF error and $TEXT() returned an empty string. Note that accessing the
source code within a TP transaction (either implicit or explicit) always uses the current definition.
(GTM-8389) 

•  When interrupted by a signal requesting termination, such as SIGTERM, while writing to the
principal device, GT.M prints that all subsequent rundown messages correctly. Previously, there was
a small window in writing to the principal device when an external signal could result in corrupt
rundown messages. This issue was discovered in the GT.M development environment and was never
reported by any user. (GTM-8397)

•  Calls to $TEXT() for which the compiler can determine the source code line at compile time it
compiles as literal strings in the object code. Specifically, this optimization occurs when the entryref
refers to a line in the current routine, and no component of the entryref uses indirection. (GTM-8404)

•  ZSHOW accepts atomic indirection in the second expression of its argument. Previously it
incorrectly gave an error for such an attempt. (GTM-8407)

•  ZPRINT handles an unusual case when it appears within trigger code and also within an XECUTE
or indirection and the target routine has become empty (has zero length). Previously, such



Language

GTM V6.3-000
FIS

April 11, 2016, Page 33

circumstances intermittently produced a ZLINKFILE error. This issue was only observed in the GT.M
development environment, and was never reported by a user. (GTM-8417)

•  $TEXT() returns the empty string for ^GTM$DMOD and ^GTM$CI; previously these $TEXT()
arguments, which represent respectively the base frames for mumps -direct and a call-in and could
be derived from $STACK(), $ZPOSITION or ZSHOW "S", produced an RPARENMISSING error.
(GTM-8431)

•  ZSHOW expr:gvn stores continuations of information that do not fit in the maximum record
size as immediate descendants, using ordinal subscripts starting at one (1), of the node holding
the beginning of the information. This facilitates identifying when multiple nodes need to be
reassembled to find the entire item. In addition, the ^%ZSHOWVTOLCL utility program restores
ZSHOW "V":gvn data into its original local variables. The utility needs to be invoked with $ECODE
set to the empty string ("") and cannot restore a local variable with the same name (%ZSHOWvbase)
as the parameter in its formal list. Other ZSHOW information typically fits within common database
record size limitations. Previously, ZSHOW expr:gvn stored continuation nodes at the same level as
other nodes. Although this change is not backward compatible, it facilitates automated restoration
even of nodes exceeding the maximum record size of the global, which was not the case previously
(GTM-8433) 

•  When a GT.M process receives a MUPIP STOP while doing a READ on a SEQUENTIAL, FIFO, or
PIPE device in NOFIXED, M mode, the process terminates. Previously, this combination could cause
the process to hang. (GTM-8435)

•  GT.M produces an appropriate error for an inappropriately long device name in the argument
of OPEN, USE and CLOSE commands; previously such an argument could cause a segmentation
violation (SIG-11). (GTM-8440)

•  When interrupted by a signal requesting termination, such as SIGTERM GT.M handles the
termination appropriately. In GT.M V6.2-002 and V6.2-002A, if the interrupt happened during certain
small windows of execution, it was possible for the process to terminate abnormally, hang, or exhibit
other incorrect behavior under rare conditions. This issue was discovered in the GT.M development
environment and was never reported by any user. (GTM-8448)

•  $ZGETJPI() reports large values appropriately; previously large times could wrap. (GTM-8450)

•  A JOB command with PASSCURLVN correctly passes alias containers that contain KILL'ed original
aliases. Previously, JOB command with PASSCURLVN could fail with INDEXTRACHARS error in
such a case. (GTM-8465)

•  $ZSEARCH() avoids a possible deadlock that could cause a process to hang indefinitely. This issue
was only observed in the GT.M development environment, and was never reported by a user.
(GTM-8475)

•  GT.M handles errors from triggers on globals that span nodes or regions when the error handler
does not clear $ECODE. Previously, when a trigger's error handler did not clear $ECODE for
an update to a global that spanned regions or nodes, GT.M issued a fatal GTMASSERT2 error.
(GTM-8476)



Language

FIS
Page 34, April 11, 2016 FIS

•  GT.M no longer issues an inappropriate TLVLZERO error when executing a TCOMMIT command,
as it previously did under certain very rare conditions. This issue was only observed in the GT.M
development environment, and was never reported by a user. (GTM-8477)

•  MUPIP JOURNAL -EXTRACT leaves journal files in a wholesome state when run where a
corresponding database was not shutdown in an orderly fashion, due to for example a kill -9,
attached processes exceeding 32Ki, etc. Previously, under these somewhat unusual conditions MUPIP
JOURNAL -EXTRACT left the journal files in a state where they could not be applied to recover the
database. (GTM-8483)

•  M compilations, trigger compilations, and online integrity checks no longer result in segmentation
faults (SIG-11) in rare cases. This issue was only observed in the GT.M development environment,
and was never reported by a user. (GTM-8484)

•  GT.M correctly issues a ZROSYNTAX error when transitioning from a $ZROutines with auto-relink
enabled to a $ZROutines that has non-existent directory paths. Previously, GT.M terminated with a
segmentation violation (SIG-11). (GTM-8486)

•  GT.M treats VIEW 1 and VIEW 0 as errors. Previously, it treated these constructs as VIEW
"GDSCERT":1 and VIEW "GDSCERT":0 commands respectively. (GTM-8490)

• On AIX, for non-wildcard searches, $ZSEARCH() exhibits performance similar to that of other
platforms. The correction made with GTM-8237 in V6.2-002 exposed decreased and erratic
performance on AIX of the POSIX service used to perform such searches. [AIX] (GTM-8491)

•  Unless overridden with a GBLDIR jobparameter, processes started with the JOB command use
the global directory specified by the $ZGBLDIR of the process executing the JOB command (as
documented). Previously, these processes incorrectly used the value of the environment variable
gtmgbldir in the environment of the parent executing the JOB command. As a side effect, since
the process executing the JOB command would have previously validated the path to the global
directory, a JOB'd processes does not terminate with a segmentation violation (SIG-11), as it
previously did, if $gtmgbldir is longer than GT.M's limit of 255 bytes for the path to the global
directory. You should check all occurrences in your application where it executes JOB commands
without GBLDIR jobparameters when its values of $ZGBLDIR and $gtmgbldir differ. In addition,
processes no longer terminate with a segmentation violation (SIG-11) when: executing the ZSYSTEM
command with an overly long value of the environment variable SHELL; and initializing the
reference implementation of the encryption plugin with an overly long value of the environment
variable GNUPGHOME. These issues were only observed in the GT.M development environment,
and were never reported by a user. (GTM-8512)



GT.M V6.3-000
FIS

April 11, 2016, Page 35

System Administration

•  MUPIP JOURNAL commands (e.g. ROLLBACK, RECOVER, VERIFY, SHOW etc.) accept the -
PARA[LLEL][=n] qualifier to specify the number of parallel threads (for backward processing) and
parallel processes (for forward processing). Omitting the qualifier or specifying a value of one (1)
defaults to a single process with no threads. Omitting the value or specifying a value of zero (0)
specifies one thread or process per region. A value greater than one (1) specifies the maximum
number of concurrent threads or processes MUPIP should use, although it never uses more than
one per region. If the number of regions exceeds the specified value, MUPIP allocates threads or
processes in an order determined by timestamps in the journal records. The environment variable
gtm_mupjnl_parallel provides a value when the command has no explicit -PARALLEL qualifier;
when defined with no value gtm_mupjnl_parallel acts like -PARALLEL with no value. When the -
PARALLEL qualifier (or the gtm_mupjnl_parallel environment variable) specifies the use of parallel
processes in the forward phase of a MUPIP JOURNAL command, MUPIP may create temporary
shared memory segments and/or extract files (corresponding to -extract or -losttrans or -brokentrans
qualifiers) and clean these up at the end of the command; however an abnormal termination such as
a kill -9 might cause these to be orphaned.

Journal extract files (created by specifying one of -extract or -brokentrans or -losttrans to a MUPIP
JOURNAL command) contain journal records sorted by sequence number (token_seq/jsnum) then
by update order (updnum) for all regions which were replicated/journaled - in other words: in the
exact order their corresponding updates happened in time. In prior versions of GT.M, these files were
not sorted which meant applying lost transaction files (for example) required first sorting the file to
correspond to the update-order before applying them.

In addition, a MUPIP JOURNAL -SHOW=HEADER has default of -NOVERIFY if no other action
qualifiers (-EXTRACT, -RECOVER, -ROLLBACK, -SHOW) are specified. This speeds up the command
in the default case (no verification of the entire journal file occurs). Note that specifying -VERIFY
explicitly still does the verification as requested. (GTM-5007) 

•  See GTM-7768. (GTM-5726)

•  With the -ENCRYPT flag, MUPIP REORG changes the encryption key of a database, or encrypts an
unencrypted database, while the database continues to be used by applications. Whether or not the
prior encryption uses non-zero initialization vectors (IVs), database blocks encrypted with the new
key use non-zero IVs (see GTM-8117). The syntax is:

    MUPIP REORG -ENCR[YPT]=<key> -REGION <region-list>

where <key> is a key provided by MUPIP to the encryption plugin. The reference implementation
of the plugin expects a key with the specified name in the encryption configuration file identified
by $gtmcrypt_config. The configuration file must contain an entry in the database section for each
database file mapping to a region specified in <region-list> that names the specified key as its
key. The -ENCRYPT flag is incompatible with all other command line flags of MUPIP REORG, and
performs no operation other than changing the encryption key. If the specified key is already the

#GTM-7768
#GTM-8117


System Administration

FIS
Page 36, April 11, 2016 FIS

encryption key of a database region, MUPIP REORG -ENCRYPT moves on the next region after
displaying a message (on stderr, where MUPIP operations send their output).

As MUPIP REORG -ENCRYPT must read, re-encrypt, and write every encrypted block in each
database file, its operation will take a material amount of time on the databases of typical
applications, and furthermore will add an additional IO load to the system on which it runs. You can
use the environment variable gtm_poollimit to ameliorate, but not eliminate, the impact, at the cost
of extending execution times. To minimize impact on production instances, FIS recommends running
this operation on replicating secondary instances, rather than on originating primary instances.

MUPIP REORG -ENCRYPT switches the journal file for each database region when it begins
operating on it, and again when it completes, and also records messages in the syslog for both events.
Note that the detailed journal extract format is now level 8.

As is the case under normal operation when MUPIP REORG -ENCRYPT is not active, journaled
databases are protected against system crashes when MUPIP REORG -ENCRYPT is in operation:
MUPIP JOURNAL ROLLBACK / RECOVER recovers journaled database regions (databases that use
NOBEFORE journaling continue to require FORWARD RECOVER / ROLLBACK).

Since a database file utilizes two keys while MUPIP REORG -ENCRYPT is underway, the database
section of the configuration file provides for a single database file entry to specify multiple keys.
For example, if the keys of database regions CUST and HIST, mapping to database files cust.dat and
hist.dat in directory /var/myApp/prod, are to be changed from key1 to key2 using the command:

    MUPIP REORG -ENCRYPT=key2 -REGION CUST,HIST

then the database section of the configuration file must at least have the following entries:

 database: {
     keys: ({
         dat: "/var/myApp/cust.dat";
         key: "key1";
     },{
         dat: "/var/myApp/cust.dat";
         key: "key2";
     },{
         dat: "/var/myApp/hist.dat";
         key: "key1";
     },{
         dat: "/var/myApp/hist.dat";
         key: "key2";
     })
 };

In other words, each database file entry can have multiple keys, and a key can be associated with
multiple database files. With a configuration file that has multiple keys associated with the same
database file, MUPIP CREATE uses the last entry. Other database operations use whichever key has
a hash matching one in the database file header, reporting an error if no key matches. To improve



System Administration

GTM V6.3-000
FIS

April 11, 2016, Page 37

efficiency when opening databases, you can delete entries for keys that are no longer used from the
configuration file.

MUPIP REORG -ENCR[YPT] can encrypt an unencrypted database only if the following command:

    MUPIP SET -ENCRYPTABLE -REGION <region-list>

has previously marked the database "encryptable".

The command requires standalone access to the database. Just as encrypted databases use global
buffers in pairs (for encrypted and unencrypted versions of blocks), a database marked as encryptable
has global buffers allocated in pairs (i.e., the actual number of global buffers is twice the number
reported by DSE DUMP -FILEHEADER) and requires correspondingly larger shared memory
segments. To revert unencrypted but encryptable databases back to "unencryptable" state, use the
command:

    MUPIP SET -NOENCRYPTABLE -REGION <region-list>

The above command also requires standalone access, and the result depends on the state of the
database. It:

• is a no-op if the database is encrypted;

• is disallowed if the database is partially (re)encrypted; and

• prohibits encryption if the database is not encrypted.

Under normal operation, a database file has only one key. Upon starting a MUPIP REORG -ENCRYPT
to change the key, there are two keys, both of whose hashes GT.M stores in the database file header.
With a MUPIP REORG -ENCRYPT operation underway to change the key, normal database operation
can continue, except for another MUPIP REORG -ENCRYPT or MUPIP EXTRACT in binary format.
Other MUPIP operations, such as MUPIP BACKUP and MUPIP EXTRACT in ZWR format can occur.
A MUPIP REORG -ENCRYPT operation can resume after an interruption, either unintentional,
such as after a system crash and recovery, or intentional, after an explicit MUPIP STOP of the
MUPIP REORG -ENCRYPT process. To resume the REORG operation, reissue the original command,
including the key parameter. (Note that supplying a key other than the one used in the original
command results in an error.)

After the MUPIP REORG -ENCRYPT process completes, subsequent MUPIP REORG -ENCRYPT
operations on the same region(s) are disallowed until the following command is run:

    MUPIP SET -ENCRYPTIONCOMPLETE -REGION <region-list>

The reason to block subsequent MUPIP REORG -ENCRYPT operations upon completion of one is to
provide time for a backup of the entire database before enabling further key changes. MUPIP SET
-ENCRYPTIONCOMPLETE reports an error for any database region for which MUPIP REORG -
ENCRYPT has not completed.



System Administration

FIS
Page 38, April 11, 2016 FIS

The above changes necessitated certain alterations of the encryption plugin API (for other API
changes, see GTM-8336).
(GTM-6310) 

•  See GTM-8137. (GTM-6317)

•  MUPIP EXTRACT and MUPIP JOURNAL -EXTRACT are faster. While improvements you see
will depend on the circumstances of your configuration and environment, in testing in the GT.M
development environment, GO and ZWR formatted extracts completed in as much as three to four
times faster than before. (GTM-6388)

•  On AIX, GT.M uses the AIX provided ICU libraries when gtm_icu_version is not defined. Previously
GT.M required users to build the ICU libraries. [AIX] (GTM-6858) 

•  With the -ZEROBACKLOG qualifier, a MUPIP REPLICATE -SOURCE -SHUTDOWN command shuts
down the Source Server either when the backlog goes to zero, or the timeout expires, whichever
occurs first. (GTM-6928) 

•  MUPIP JOURNAL -ROLLBACK recognizes the -FORWARD qualifier to specify it apply update
records in journal files to backed up copies of database files in order to bring them to the same
state that MUPIP JOURNAL -ROLLBACK -BACKWARD "*" would bring crashed database files.
Unlike MUPIP JOURNAL -ROLLBACK -BACKWARD, MUPIP JOURNAL -ROLLBACK -FORWARD
accepts either a comma-delimited list of region names or "*", indicating the journal files associated
with all regions in the current Global Directory. A MUPIP JOURNAL -ROLLBACK -FORWARD "*"
command does what a MUPIP JOURNAL -RECOVER -FORWARD "*" would do except that the -
ROLLBACK also updates sequence number related fields in the database file header, and ensures
update serialization across regions - MUPIP JOURNAL -RECOVER can leave one database region
ahead of another region and cannot ensure database Consistency across regions, whereas MUPIP
JOURNAL -ROLLBACK can ensure Consistency. Databases recovered with MUPIP JOURNAL -
ROLLBACK can therefore be used in replicated instances. Note that, in the context of -RECOVER and
-ROLLBACK, the "*" indicates the use of all the appropriate journal files in all the replicated regions
and the quotes prevent inappropriate expansion by the OS shell. MUPIP JOURNAL -ROLLBACK
-FORWARD leaves the journaling state turned off in database files (as does MUPIP JOURNAL -
RECOVER -FORWARD), which in turn means that replication is also turned off; journaling should
be re-enabled, and replication turned on, before database files are used in environments where
they can be updated, but can be left off if subsequent access is read-only. After a MUPIP JOURNAL
-ROLLBACK -FORWARD, the replication instance file needs to be recreated as part of turning
replication on in the recovered database. MUPIP JOURNAL -ROLLBACK -FORWARD can use both
before-image and nobefore-image journal files. See the More Information section for details on
qualifier use. In addition, MUPIP JOURNAL -ROLLBACK -BACKWARD output always includes
the RLBKJNSEQ message; previously the output only included this if the rollback changed the
database (i.e., the operation was not a no-op). Also, MUPIP JOURNAL -RECOVER -BACKWARD -
BEFORE works even when -SINCE is not specified; previously such a command terminated with a
JNLTMQUAL1 error. For more information, refer to Additional Information for GTM-7291 - MUPIP
JOURNAL -ROLLBACK qualifiers. (GTM-7291) 

• GT.M accepts all ICU versions reported by "icu-config -version" for gtm_icu_version. Previously
GT.M required the format of gtm_icu_version to be <ICU Major Version> "." <ICU Minor Version>

#GTM-8336
#GTM-8137


System Administration

GTM V6.3-000
FIS

April 11, 2016, Page 39

with no trailing digits, and required ICU versions 49 & higher (i.e., with the new ICU numbering
scheme) to be specified as 4.9, 5.0, etc. (GTM-7375) 

•  An improvement in database replication communication between Source and Receiver Servers
reduces delays. Previously, a busy Source Server, for example, one searching through journal files
to find the transaction at which to resume communication with a replicating secondary instance
with a large backlog, could ignore communications long enough for the Receiver Server to close
the connection and begin a reconnection cycle, adding to the persistence of the backlog. Note
that a Source Server started with -JNLFILEONLY always reads from the journal files. (GTM-5726)
(GTM-7768)

•  MUPIP SET recognizes the -SPIN_SLEEP_LIMIT=n where n is decimal maximum number rounded
up to the nearest power of two and turned into a hexadecimal mask that determines the maximum
number of nanoseconds for processes to sleep while waiting to obtain critical sections for shared
resources, principally those involving databases. The default is zero (0) which causes the process
to return control to the UNIX kernel to be rescheduled with no explicit delay. When the value is
non-zero, the process waits for a random value between zero (0) and the maximum value permitted
by the mask. DSE CHANGE -FILEHEADER -SPIN_SLEEP_MASK provides a means to directly set
the hexadecimal value of the mask, which appears in DSE DUMP -FILEHEADER output with the
label "Spin sleep time mask." Previously, processes always rescheduled themselves with no delay.
In addition, MUPIP SET (and DSE) accept a 0 value for -SLEEP_SPIN_COUNT, which eliminates
the sleep loop in the mutual exclusion (mutex) facility so processes go straight from a hard spin to
a queued wait. Previously, the -SLEEP_SPIN_COUNT qualifier was not recognized by MUPIP SET
and processes that exhausted the hard spin count always did at least one (1) rescheduling operation.
Except on the advice of your GT.M support channel, FIS recommends leaving the default values
unchanged in production environments, until you have data from testing and benchmarking that
demonstrates a benefit from a change. If none of its qualifiers are out of the range from minimum
to maximum, MUPIP SET processes all qualifiers for each region applying them only if all are
appropriate for the region and otherwise warning of any issues. Previously, MUPIP SET stopped at
the first error and if some qualifiers required standalone access and others did not, applied only those
requiring standalone access and silently ignored those that did not. If you have scripting that checks
for correct completion of a MUPIP SET command, no changes are required to accommodate this
change. However, if your scripting checks for and takes actions based on errors reported by MUPIP
SET, you should test your script and revise it as needed. (GTM-7809) 

•  MUPIP JOURNAL ROLLBACK fixes DBDANGER situations and therefore neither issues
DBDANGER messages to syslog nor freezes an instance. Previously, MUPIP JOURNAL ROLLBACK
could send DBDANGER messages to syslog even though it would fix the problem, and, when using
the Instance Freeze facility with a DBDANGER in the custom errors file, a ROLLBACK issuing a
DBDANGER message would freeze until manually unfrozen. (GTM-7831)

•  GT.M replication uses the operating system and network to perform flow control. Previously, the
Source and Receiver Servers performed flow control, as a consequence of which the Receiver Server
could flood the socket connection with flow control messages, leading to a large number of log
messages and an occasional hang in replication processing. (GTM-7838)



System Administration

FIS
Page 40, April 11, 2016 FIS

•  MUPIP LOAD accepts negative values in ZWR format input such as that produced by %GO.
Previously, such a value caused a LOADFILERR. The workaround was to use GO format or edit the
file to add a pair of double-quotes around the negative value. (GTM-8020)

•  GT.M can be configured to permit more than 32,767 processes to concurrently access a database
file. In a replicated environment, to permit one or more database files to be concurrently accessed
by more than 32,767 updating processes also requires the replication instance file to be configured
to permit concurrent access by more than 32,767 processes. The default behavior is to limit the
number of processes accessing a database file or instance file to 32,767. This permission is effected
by the QDBRUNDOWN flags in database file headers and in replication instance files. When an open
database file or replication instance file with QDBRUNDOWN set is first concurrently accessed by
more than 32,767 processes, GT.M (a) logs a NOMORESEMCNT message in the system log, and (b)
stops counting the number of attached processes. This means that GT.M cannot recognize when the
number of attached processes reaches zero (0) in order to release the corresponding shared resources,
and therefore requires explicit manual clean up of resources for an orderly shutdown. Previously,
exceeding 32Ki attachments to shared resources caused a DBFILERR, CRITSEMFAIL error with an
ERANGE status for database and replication instance files, as it still does when QDBRUNDOWN is
not set.

Except in application configurations that require it, FIS recommends not setting QDBRUNDOWN.
Not setting QDBRUNDOWN allows GT.M to clean up resources, instead of putting the burden on
the operational procedures. Where GT.M cannot perform an orderly shutdown, an explicit, clean
shutdown must be performed as follows:

• Replicated instances require a MUPIP JOURNAL -ROLLBACK -BACKWARD "*" executed after the
MUPIP REPLICATE SOURCE -SHUTDOWN command (remember that even instances receiving a
replication stream have one or more Source Servers).

• Database files that are journaled but not part of a replication instance require a MUPIP JOURNAL -
RECOVER -BACKWARD command.

• Database files that are not journaled (and hence not replicated) require a MUPIP RUNDOWN
command.

MUPIP REPLICATE -INSTANCE_CREATE -[NO]QDBRUNDOWN controls the QDBRUNDOWN
setting of a replication instance file when it is created. For an existing replication instance file,
requiring stand-alone access (i.e., the instance must not have an existing Journal Pool), MUPIP
REPLICATE -EDITINSTANCE -[NO]QDBRUNDOWN controls the QDBRUNDOWN setting.
Specifying -QDBRUNDOWN turns it ON, and -NOQDBRUNDOWN turns it OFF. MUPIP REPLICATE
-EDITINSTANCE -SHOW displays the current QDBRUNDOWN setting of an instance file as
"HDR Quick database rundown is active", reported as TRUE or FALSE. Note that QDBRUNDOWN
is an existing setting in database files. See the release note for GTM-8296 on accessing the
QDBRUNDOWN setting using %PEEKBYNAME().

In support of this enhancement:

#GTM-8296


System Administration

GTM V6.3-000
FIS

April 11, 2016, Page 41

• As all processes must use the same setting of QDBRUNDOWN, changing the QDBRUNDOWN
setting requires standalone access; previously it did not for database files, and was not meaningful
for replication instance files.

• MUPIP RUNDOWN issues a DBRDONLY error if it encounters a database file with read-only
permissions (no read-write permission) and the database shared memory indicates that the number
of attached processes exceeded 32Ki at some point after it was opened. Databases that exceed the
32Ki counter need a process with read-write ability to perform the required rundown/recover/
rollback.

The work to develop this enhancement also addressed several issues. These issues were only
observed in the GT.M development environment, and were never reported by a user.

• Endian conversion works correctly in the rare case that the database is opened by a process after
MUPIP ENDIANCVT starts converting the endianness of a database, and before it blocks other
processes from opening the database. Previously, this could result in a database with structural
damage requiring manual repair.

• MUPIP JOURNAL -SHOW=HEADER on a journal file of a supplementary instance reports
correct stream sequence numbers (displayed as "Stream i : Start RegSeqno" or "Stream i :
End RegSeqno" where i identifies a stream, from 0 through 15). Previously the stream sequence
numbers were not correctly maintained if the instance had helper writer processes (spawned off by
the Receiver Server when started with MUPIP REPLICATE -RECEIVER -HELPERS).

• When it encounters interprocess communication (IPC) shared memory & semaphores for a
database file for which it does not have read-write permissions and which is currently open by no
processes with read-write access, a MUPIP RUNDOWN with no arguments issues a DBRDONLY
error message, and leaves both semaphores and shared memory intact. Previously, in this case
it removed the semaphores while leaving the shared memory intact, an out-of-design condition
which could result in errors to other processes accessing that database file. The workaround to
clean up the out-of-design state, was to open and close the database with a read-write process
(the recommended technique), or run MUPIP RUNDOWN as root (not recommended, as GT.M
processes should be run as root only as a last resort).

• MUPIP RUNDOWN on a database file on which updates are frozen (e.g., using MUPIP FREEZE -
ON) preserves the freeze. Previously if a frozen database file had a corresponding shared memory
segment, MUPIP RUNDOWN would release the freeze.

• MUPIP RUNDOWN with no arguments detaches from shared memory segments as it moves
from one Journal Pool to another. Previously, if the gtm_custom_errors environment variable
of an instance was set to a non-null value and MUPIP RUNDOWN encountered a Journal Pool
shared memory segment corresponding to the receiving side of a replication connection, it would
report a MURPOOLRNDWNFL error on that Journal Pool but not detach from the shared memory
segment before moving on to the next journal pool. Encountering a large number of such Journal
Pools could potentially cause MUPIP RUNDOWN to exhaust available address space on a 32-bit
architecture, and hit an address space limit, if configured, on a 64-bit architecture.



System Administration

FIS
Page 42, April 11, 2016 FIS

• MUPIP RUNDOWN works correctly on database files using the MM access method. Previously it
incorrectly issued an "Invalid argument" message if it also issued a DBNAMEMISMATCH error on
that MM database.

• A MUPIP SET -JOURNAL command that requires standalone access to the database file (for
example turning replication on or off) works correctly. In GT.M versions V6.2-000 to V6.2-002A, it
could in rare cases terminate abnormally with a segmentation fault (SIG-11).

• GT.M correctly maintains database shared memory in some rare cases when a database file has
QDBRUNDOWN enabled and processes with read-only access open the database file BEFORE
processes with read-write access. Previously, it was possible for an associated shared memory
segment with updates not yet applied to the database file on disk to be inadvertently deleted.

• GT.M logs the LASTWRITERBYPAS message in the system log (syslog) file only once per database
file for the time that it stays open. Previously, in rare cases it was possible for this message to be
issued more than once.

• Helper processes (started with the GT.M replication Update Process) work correctly if they need to
issue a LASTWRITERBYPAS message to the syslog. Previously they terminated abnormally with a
segmentation fault (SIG-11).

(GTM-8137) 

•  MUPIP LOAD accepts a broader range of labels; label second lines containing "ZWR", "GLO", or
the pattern produced by MUPIP EXTRACT and %GO automatically determine a format. Starting
with V6.2-001, LOAD required the second line be either the exact format produced by MUPIP
EXTRACT and ^%GO or under some conditions have a second line ending in "; ZWR" or "; GLO". In
addition, MUPIP LOAD accepts files with DOS style termination. For -FORMAT={ZWR|GO} files not
produced by MUPIP EXTRACT or %GO, the first line of the label must contain the case insensitive
text "UTF-8" for UTF-8 mode files and the second line should contain the case insensitive test "ZWR"
for zwr format or "GLO" for GO format and the two label lines must contain a total of more than 10
characters. (GTM-8223) 

•  MUPIP replication compression supports the use of the IBM provided zlib library for AIX. Previously
MUPIP replication compression required a custom compiled library. [AIX] (GTM-8225) 

•  MUPIP REPLIC -BUFFSIZE=<bytes> has a maximum of 4294967288 (4GiB-8) for both -SOURCE and -
RECEIVER; previously it had a maximum of 2147483647 (2GiB-1). (GTM-8326)

•  MUPIP TRIGGER -TRIGGERFILE presents a delete all confirmation prompt once, "Please enter Y or
N:" (case insensitive). For any other response, MUPIP prompts again. Previously, every time MUPIP
TRIGGER -TRIGGERFILE had to restart its transaction, it would repeat the prompt. Also, previously
MUPIP TRIGGER -TRIGGERFILE would treat any response other than Y (case insensitive) as NO.
(GTM-8342) 

•  The distribution contains a source tarball for the reference encryption plugin, but no binaries. If
you wish to use the reference encryption plugin, you must follow the instructions to compile it from
the source in the tarball. Previously the distribution included binaries. Although not backwards
compatible, we took this step because variations in encryption libraries meant that we could not



System Administration

GTM V6.3-000
FIS

April 11, 2016, Page 43

provide a single binary that was guaranteed to run across Supported platforms with the robustness
we require of GT.M. Note that when compiling the encryption plug-in, you should always review
the makefile to ensure that all required dependencies in the makefile are installed on your system,
and edit as needed to ensure that the locations of the header and library paths are correct for your
system. (GTM-8361) 

•  Repeated invocations of MUPIP JOURNAL ROLLBACK/RECOVER work correctly in case prior
invocations terminated with certain errors. Previously, if at least two ROLLBACK or RECOVER
commands terminated incompletely (say due to a GTM-E-MEMORY error) AND a MUPIP SET
JOURNAL occurred between the interrupted commands, a subsequent ROLLBACK or RECOVER
command could terminate abnormally with a GTMASSERT error even after correcting the cause of
the original errors (say by raising the ulimit memory setting to avoid GTM-E-MEMORY errors). FIS
recommends against unnecessarily changing journal files in the middle of operational processes such
as ROLLBACK or RECOVER. (GTM-8394)

•  The Source Server correctly identifies the current journal file in the presence of a concurrent journal
file switch. Previously, on rare occasion (made somewhat less rare by specifying the -JNLFILEONLY
option to the Source Server) the Source Server would fail to identify the current journal file, issue a
NOPREVLINK error, and exit. This issue was only observed in the GT.M development environment,
and was never reported by a user. (GTM-8410)

•  See GTM-7658. (GTM-8420)

•  A Receiver Server started with -autorollback remains active even if an online rollback does not
change the state of the database. Previously a Receiver Server started with -autorollback would
shutdown if an automatic online rollback did not change the state of the database. (GTM-8421)

•  See GTM-6388. (GTM-8422)

•  The Receiver Server (MUPIP) correctly handles replication record conversion for large transactions
from prior GT.M releases. A regression in GT.M V6.2-000 caused the Receiver Server to hang when
the conversion size of records from a single transaction replicated from V5.4-002B or earlier exceeded
2MiB. (GTM-8423)

•  The Update Process receiving a replication stream works correctly in certain edge cases when a
concurrent online rollback runs on the instance. Previously, the Update Process could terminate with
a GTMASSERT error or hang and block further updates for potentially arbitrary periods of time. This
was only encountered in the GT.M development environment, and was never reported by a user.
(GTM-8425)

•  MUPIP INTEG appropriately reports large values; previously large amounts could overflow and
cause erroneous reports. (GTM-8428)

•  Epoch tapering performs properly for a rare edge case. Previously, on very rare occasions, epoch
tapering could encounter a divide-by-zero error. This issue was only observed in the GT.M
development environment, and was never reported by a user. (GTM-8443)

•  The Source Server updates the resync sequence number in the replication instance file every 60
seconds. Internal testing pointed to a few timing windows where the resync sequence number was
not updated for over 90 seconds. (GTM-8461)

#GTM-7658
#GTM-6388


System Administration

FIS
Page 44, April 11, 2016 FIS

•  MUPIP EXTRACT on an encrypted database instance creates valid binary extract files regardless
of the region mapping. Previously, MUPIP EXTRACTs on instances with multiple regions pointing
to the same database file could result in invalid extract files, that MUPIP LOAD could not process.
The workaround was to use a global directory with regions merged so that each database file was
referenced in just one segment. (GTM-8464)

•  When a Source Server starts replicating updates from a newer generation journal file, it closes any
prior generation of that journal file that it has open. Previously, it closed open journal files only
when switching to the Journal Pool, which was problematic for a Source Server started with the -
jnlfileonly option. The workaround was to shut down and restart the Source Server. Additionally, the
Source Server more efficiently handles the case where it has a large number of journal files open - a
common situation when its receiving secondary instance starts with a significant backlog, forcing the
Source Server to chain through large numbers of prior generation journal files. (GTM-8468)

•  See GTM-7831. (GTM-8470)

•  When completing a TLS renegotiation, the source server places a "Sending
REPL_RENEG_COMPLETE" in its log file after a "REPL_RENEG_ACK received" message and before a
"Sent REPL_RENEG_COMPLETE" message; previously it did not record this event. (GTM-8478)

•  MUPIP REORG limits its global buffer usage to the value specified by the gtm_poollimit
environment variable, or, by default, if gtm_poollimit is not defined, to 64 buffers. Previously MUPIP
REORG did not restrict its use of global buffers although the documentation stated that it did. We are
aware of some issues with gtm_poollimit and recommend the following until the next release: avoid
using it for processes that make extended global references or run MUPIP TRIGGER. (GTM-8479)

•  MUPIP BACKUP -DATABASE now attempts to preserve, and potentially restore, sparseness in
database files. Previously, MUPIP BACKUP -DATABASE resulted in backup database files that were
fully allocated. In the case of large but sparse database files, this could produce backup database files
that used substantially more storage than the original database files. To remove sparseness from
backup database files, use the fallocate command on Linux, or copy them to another location using
the cp command on AIX. (GTM-8480) 

•  MUPIP INTEG -FAST handles certain obscure integrity conditions correctly. Previously, these
conditions could result in a REGSSFAIL error (AIX) or KILLBYSIGSINFO1 (signal 11) fatal error and
core dump (Linux). MUPIP INTEG without the -FAST qualifier was not affected. (GTM-8481)

•  MUPIP JOURNAL correctly issues FILEPARSE errors for invalid paths; previously FILEPARSE errors
would result in a SIG-11. (GTM-8485)

•  Shutting down all Source Server processes when GT.M processes are still accessing a database file
does not generate inappropriate REPLINSTMATCH errors. (GTM-8487)

•  MUPIP BACKUP -ONLINE creates a usable backup of the replication instance file on a secondary
instance. Previously, in rare cases, it could create a backup instance file that would cause the
secondary to be out of sync with the currently replicating primary. Also, the replication instance
file header on disk stores the current journal sequence number whenever a new history record gets
added to the instance file. Previously this was not maintained which meant a MUPIP REPLIC -EDIT
-SHOW command on the instance file potentially returned stale information on a live replicated

#GTM-7831


System Administration

GTM V6.3-000
FIS

April 11, 2016, Page 45

environment. These issues were only observed in the GT.M development environment, and never
reported by a user. (GTM-8494)

•  MUPIP commands that need standalone access, for example, MUPIP SET -REPLICATION=ON,
issue a MUUSERLBK error on a crashed replication-enabled database, and MUUSERECOV error in
case of a non-replicated-but-journaled database. Previously, the MUPIP commands would attempt a
rundown regardless of the replication and journaling state of the database, potentially resulting in
an unrecoverable database. Also MUPIP JOURNAL -RECOVER -FORWARD and MUPIP JOURNAL
-ROLLBACK -FORWARD now issue a MUUSERECOV or MUUSERLBK error in case the database
shared memory segment exists. In this case, only a MUPIP JOURNAL -RECOVER -BACKWARD
or MUPIP JOURNAL -ROLLBACK -BACKWARD can correctly flush the updates from shared
memory to the database file on disk. Previously MUPIP JOURNAL -RECOVER -FORWARD used
to proceed with the recovery potentially creating a corrupt database file. Also, MUPIP RUNDOWN
issues a MUUSERLBK error on a crashed replication-enabled database even if the database has
NOBEFORE_IMAGE journaling. Previously, it used to issue a MUUSERECOV error in this case. This
issue was only observed in the GT.M development environment, and was never reported by a user.
(GTM-8502) 

•  Replication from an originating primary instance A to business continuity instance B and a
supplementary instance P to an instance downstream Q (i.e., B<-A->P->Q) is more robust.
Previously, if there was at least one switchover between A and B while the P->Q link was operating
(i.e., from B<-A->P->Q to A<-B->P->Q) followed by a disruption in the P->Q replication connection,
the automatic reconnect incorrectly concluded that P and Q were out of sync and the receiver server
on Q incorrectly terminated. This issue was only observed in the GT.M development environment,
and was never reported by a user. (GTM-8507)



GTM V6.3-000
Page 46, April 11, 2016 FIS



GT.M V6.3-000
FIS

April 11, 2016, Page 47

Other

•  The DSE ALL -CLEARCORRUPT qualifier sets the CORRUPT_FILE file header to FALSE for all GDS
regions. Use the ALL -CLEARCORRUPT qualifier only after receiving instructions from your GT.M
support channel. Previously, there was no single command to clear the CORRUPT_FILE to FALSE for
all regions. (GTM-7199)

•  ^%RI correctly responds to a yes answer to the "Formfeed delimited <No>? " question, correctly
places its output even if the output is sent to a directory without specifying a trailing slash (/),
appropriately restores the characteristics of $PRINCIPAL that it adjusts, and accepts "DOS" line
terminations (<CR><LF> instead of <LF>) at the end of input file lines. Previously it ignored a "YES"
form-feed answer, prepended the directory name to the routines, changed the characteristics of the
principal device and retained <CR>s at the end of input file lines, which resulted in compilation
errors.(GTM-7658) 

•  Created processes inherit only those open files that they should inherit. Previously unintended file
sharing with non-GT.M executables could cause rare file handling errors. Non-GT.M executables
can be run via ZSYSTEM, PIPE, MUPIP replication filters, and the gtm_procstuck_exec environment
variable. (GTM-8009)

•  ^%GI accepts records up to the maximum string length (currently 1MiB). Previously it was limited to
8KiB for ZWR format and 2044 bytes for GO format. (GTM-8022) 

•  The GT.M encryption plugin works correctly when $gtm_dist points to the utf8 subdirectory of the
GT.M installation, as it should for UTF-8 mode processes. Previously, pointing $gtm_dist to the utf8
subdirectory resulted in the encryption plugin failing to load with a CRYPTDLNOOPEN2 error. The
workaround was to replace the symbolic link plugin in the utf8 directory with a copy of the plugin
directory from the main GT.M installation directory. This was originally fixed in V6.2-000, but was
inadvertently omitted from the release notes. (GTM-8028)

•  In the event that a process detects a certain class of inconsistencies in the Journal Pool, it generates
a core file (but does not terminate), and forces replication to continue from the journal files. This
causes replication to reset to a known state. Replication resumes from the Journal Pool once a Source
Server process determines that the updates it needs to replicate are in the Journal Pool. (GTM-8076)

•  A GT.M process waits for 500 ms before re-attempting to start gtmsecshr. As a consequence of a
regression introduced in a previous version, while processing a timed event, GT.M waited only 3
milliseconds between attempts which could generate unnecessary syslog messages. (GTM-8395)

•  The %MPIECE utility NEWs all local variables except its arguments. Previously it could disrupt the
state of a caller's local variables. (GTM-8403)

•  Journal record time stamps are more closely aligned with $HOROLOG and the timekeeping used
for the HANG function. Previously there was some evidence that a global SET, HANG 1, global SET
might occasionally yield two journal records in with the same time stamp. (GTM-8416)



Other

FIS
Page 48, April 11, 2016 FIS

•  The build dependencies in the source code for GT.M released under a free / open source software
license support a greater variety of environments. GT.M V6.2-002/-002A builds failed in some build
environments with the error: "fatal error: xfer_desc.i: No such file or directory". (GTM-8429)

•  The gtminstall script now honors the −−copyenv, −−copyexec and −−group-restriction options;
previously these options caused the script to fail. (GTM-8441)

•  DSE manages output so it appears in the intended order. In versions, from GT.M V6.2-000 to GT.M
V6.2-002A inclusive, when stdout and stderr for DSE invocation were assigned to the same file or
terminal, DSE sometimes presented output in an incorrect order. There was no issue if stderr and
stdout were directed to different destinations - output always went to stderr. This issue was only
observed in the GT.M development environment, and was never reported by a user. (GTM-8458)

•  When starting gtmsecshr, GT.M clears environment variables that gtmsecshr does not need.
Previously, it set them to the empty string (""), which could result in benign ARCTLMAXLOW
warnings in the syslog. (GTM-8471)

•  DSE interprets the keys on damaged blocks appropriately; previously moving between a good
block and a damaged block could cause DSE to report the wrong key interpretation. This issue was
discovered in the GT.M development environment and was never reported by any user. (GTM-8495)

•  DSE uses the original values used to create shared memory in case other values have been written to
the file header. Previously mismatched values between shared memory and the file header prevented
DSE from attaching to an active database. Note that such a scenario would require explicit abuse or
misuse of DSE, and could not happen accidentally. Please remember that:

• As a low level database repair tool of last resort, DSE assumes a knowledgeable user, and does
no edit checking of input values. Do not use DSE to make routine changes, and do not use DSE
to change a parameter if you can accomplish the same goal with MUPIP. As the normal system
administration and operations tool, MUPIP has the ability to change parameters you might
normally need to change, and it does check that input values are reasonable.

• Changing fileheader parameters with DSE should normally be performed with stand-alone access.
Change fileheader parameters on an open database only under the guidance of an expert GT.M
support channel.

This issue was only observed in the GT.M development environment, and was never reported by a
user. (GTM-8511)

•  The −−xec command line option of the %XCMD utility program is optional. Previously, it was
required. (GTM-8514)



GT.M V6.3-000
FIS

April 11, 2016, Page 49

More Information

Additional information for GTM-7291 - MUPIP JOURNAL -ROLLBACK
qualifiers

Except as detailed below, qualifiers previously supported for MUPIP JOURNAL -ROLLBACK -
BACKWARD are supported with MUPIP JOURNAL -ROLLBACK -FORWARD.

The -BEFORE time qualifier applies to MUPIP JOURNAL -ROLLBACK, both -FORWARD and -
BACKWARD. As for MUPIP JOURNAL -RECOVER, the -BEFORE qualifier specifies the time at which
ROLLBACK stops applying updates to the database in its forward processing phase (i.e., no journal
records with update times after the -BEFORE time are applied to the database). If -BEFORE (time-based)
and -FETCHRESYNC/-RESYNC (sequence-number-based) are specified in the same MUPIP JOURNAL
-ROLLBACK command, the qualifier that corresponds to an earlier database state or point in time
prevails i.e. if the update corresponding to the sequence number obtained through the -FETCHRESYNC
command happened at a later time relative to the -BEFORE qualifier, -BEFORE prevails and vice versa.

The -CHAIN qualifier applies to MUPIP JOURNAL -ROLLBACK -FORWARD just as it does to MUPIP
JOURNAL -RECOVER -FORWARD.

Unlike MUPIP JOURNAL -RECOVER -FORWARD, MUPIP JOURNAL -ROLLBACK -FORWARD, accepts
only -CHECKTN, which is the default, but does not accept -NOCHECKTN.

-FENCES=NONE and FENCES=ALWAYS are not permitted for MUPIP JOURNAL -ROLLBACK
(with -BACKWARD or -FORWARD); ROLLBACK supports -FENCES=PROCESS (the default
option). Previously MUPIP JOURNAL -ROLLBACK -BACKWARD allowed -FENCES=NONE or -
FENCES=ALWAYS which could cause incomplete transactions to be played as if they were complete
and result in a database file potentially out-of-sync with its journal files.

The -SINCE time qualifier applies to MUPIP JOURNAL -ROLLBACK -BACKWARD. As in MUPIP
JOURNAL -RECOVER, the -SINCE qualifier specifies how far back in time MUPIP JOURNAL -
ROLLBACK -BACKWARD should at least process (from the end of the journal file), before starting the
forward processing. The actual turn-around point for -RECOVER and -ROLLBACK in each database
region is an epoch in the journal files before or at the -SINCE time, but not after it.

-NOVERIFY is the default for MUPIP JOURNAL -RECOVER -FORWARD as well as MUPIP JOURNAL
-ROLLBACK -FORWARD, with the exception of MUPIP JOURNAL -RECOVER -FORWARD -
NOCHECKTN for which -VERIFY remains the default. Previously, -VERIFY was the default for MUPIP
JOURNAL -RECOVER -FORWARD. -VERIFY remains the default for all other MUPIP JOURNAL
commands (including MUPIP JOURNAL -RECOVER -BACKWARD and MUPIP JOURNAL -ROLLBACK
-BACKWARD).

The -FETCHRESYNC, -ONLINE, and -RSYNC_STRM qualifiers are not supported for MUPIP JOURNAL
-ROLLBACK -FORWARD.



More Information Additional Information for GTM-8296 -
%PEEKBYNAME()

FIS
Page 50, April 11, 2016 FIS

Additional Information for GTM-8296 - %PEEKBYNAME()

The format of the %PEEKBYNAME() function is %PEEKBYNAME(field[,regindex][,format]) where
field specifies the type of information to be returned, in the format: control_block[.field].* Some
control_blocks are:

• gd_region - fields from the global directory typically accessed via GDE using a SHOW command;
remember that these values are only used when MUPIP CREATE creates new database files.

• gtmsource_local_struct - fields from the replication instance file, and typically accessed using MUPIP
REPLICATE.

• jnl_buffer - fields from journaling control structures typically accessed using DSE DUMP
FILEHEADER

• jnlpool_ctl_struct - journal Pool fields typically accessed using MUPIP REPLICATE.

• node_local - fields from database shared memory that are not part of the fileheader, typically
accessed using DSE DUMP FILEHEADER.

• recvpool_ctl_struct - receive Pool fields (on an instance receiving a replication stream) typically
accessed using MUPIP REPLICATE.

• repl_inst_hdr.inst_info - replication fields that change infrequently, if ever.

• sgmnt_data - fields from database shared memory also part of the database fileheader, typically
accessed using DSE DUMP FILEHEADER.

The optional second expression specifies a region name, structure index or a base address associated
with the first (field name) argument. The choice is governed by the following rules applied in the
following order:

• If the value is a hexadecimal number in the form of 0xhhhhhhhh[hhhhhhhh], then PEEKBYNAME
uses it as the base address of the data to fetch. Also in this case, the offset, length, and type are taken
from the field specified in the first expression (field). For more information, see the description of
the "PEEK" mnemonic in $ZPEEK(). FIS recommends that you not use a hexadecimal number except
under the direction of your GT.M support channel.

• If the first expression refers to one of the region-related structures supported by the $ZPEEK()
function, PEEKBYNAME treats this second expression as a region name.

• If the first expression refers to one of the replication related structures supported by the $ZPEEK()
function that are indexed, PEEKBYNAME treats this second expression as an integer index value.

• For those structures supported by the $ZPEEK() function that do not accept an argument, this second
expression must be NULL or left unspecified.

The optional third expression specifies the output format in one character as defined in the "format"
argument in the $ZPEEK() documentation. This argument overrides the automatic format detection



Additional Information for GTM-8296 -
%PEEKBYNAME()

More Information

GTM V6.3-000
FIS

April 11, 2016, Page 51

by the %PEEKBYNAME utility. FIS recommends that you not use the third argument except under the
direction of your GT.M support channel.

Examples:

GTM>write $$^%PEEKBYNAME("gd_region.max_key_size","DEFAULT") ; Max key size for region
 DEFAULT
255
GTM>

LISTALL^%PEEKBYNAME

Prints all the field mnemonics acceptable as the first argument to %PEEKBYNAME() on the current
output device.

LIST^%PEEKBYNAME(.output)

Populates output variable with the type and size information indexed by the field mnemonics for all
fields accepted by %PEEKBYNAME(). FIS recommends that you not use the results of this entryref
except under the direction of your GT.M support channel.

Labels for Selected Fields

Below are selected fields for which you may find %PEEKBYNAME to be a useful alternative to running
a DSE or MUPIP command in a PIPE device, and parsing the output. If there is a field that you wish to
access using %PEEKBYNAME, please send questions to your GT.M support channel. We will get you
an answer, and if it seems to us to be of general interest, we will add it to the %PEEKBYNAME user
documentation.

Region Parameters

Calls to %PEEKBYNAME with the listed string as value of the first parameter, and the region name as
the value of the second parameter, return the value. For example:

GTM>write $$^%PEEKBYNAME("sgmnt_data.n_bts","DEFAULT") ; How many global buffers there are
1000
GTM>write $$^%PEEKBYNAME("node_local.wcs_active_lvl","DEFAULT") ; How many of them are dirty
0
GTM>for i=1:1:10000 set ^x($$^%RANDSTR(8))=$$^%RANDSTR(64)

GTM>write $$^%PEEKBYNAME("node_local.wcs_active_lvl","DEFAULT") ; And now, how many of them
 are dirty
377
GTM>

When using the following, remember to write code that allows for values other than those listed, e.g.,
if writing code to check whether before image journaling is in use, make sure it can deal with values



More Information Additional Information for GTM-8296 -
%PEEKBYNAME()

FIS
Page 52, April 11, 2016 FIS

other than 0 and 1, because a future release of GT.M can potentially introduce a new return value for a
field.

Parameter ^%PEEKBYNAME() Parameter Value

Block size "sgmnt_data.blk_size" Integer number of bytes

Commit wait
spin count

"sgmnt_data.wcs_phase2_commit_wait_spincnt" Integer count

Current
transaction

"sgmnt_data.trans_hist.curr_tn" Integer count

Defer allocate "sgmnt_data.defer_allocate" Integer - 1 means
DEFER_ALLOCATE,
0 means
NODEFER_ALLOCATE

Encryption
current key hash

"sgmnt_data.encryption_hash" String of binary bytes

Encryption - IVs
in use

"sgmnt_data.non_null_iv" Integer - 1 means
unencrypted or encrypted
with IVs, 0 means
encrypted with zero IVs

Encryption new
key hash (while
MUPIP REORG
-ENCRYPT is
underway)

"sgmnt_data.encryption_hash2" String of binary bytes

Extension size "sgmnt_data.extension_size" Integer number of blocks

Epoch taper set "sgmnt_data.epoch_taper" Integer - 1 means epoch
taper is set, 0 means it is
not

Flush trigger "sgmnt_data.flush_trigger" Integer number of blocks
(not meaningful for MM)

Journal align
size

"sgmnt_data.alignsize" Integer number of bytes

Journal
autoswitch limit

"sgmnt_data.autoswitchlimit" Integer number of bytes
for maximum size of each
journal file

Journal before
imaging

"sgmnt_data.jnl_before_image" Integer - 1 means BEFORE
image journaling, 0 means
NOBEFORE (meaningful
only if journaling is on)

Journal buffer
size

"sgmnt_data.jnl_buffer_size" Integer number of journal
buffers



Additional Information for GTM-8296 -
%PEEKBYNAME()

More Information

GTM V6.3-000
FIS

April 11, 2016, Page 53

Parameter ^%PEEKBYNAME() Parameter Value

Journal epoch
interval

"sgmnt_data.epoch_interval" Integer number of
seconds

Journal next
write offset

"jnl_buffer.dskaddr" Integer number of bytes
from beginning of journal
file

Journal next
epoch time

"jnl_buffer.next_epoch_time" Integer number of
seconds since January1,
1970 00:00:00 UTC

Journal state "sgmnt_data.jnl_state" Integer 0 means disabled,
1 means enabled but off, 2
means on

Journal SYNCIO "sgmnt_data.jnl_sync_io" Integer - 1 means
SYNC_IO, 0 means
NOSYNC_IO

Journal yield
limit

"sgmnt_data.yield_lmt" Integer count

Lock space "sgmnt_data.lock_space_size" Integer number of bytes

Maximum key
size

"sgmnt_data.max_key_size" Integer number of bytes

Machine name "node_local.machine_name" String

Maximum
record size

"sgmnt_data.max_rec_size" Integer number of bytes

Mutex hard spin
count

"sgmnt_data.mutex_spin_parms.mutex_hard_spin_count" Integer count

Mutex sleep spin
count

"sgmnt_data.mutex_spin_parms.mutex_sleep_spin_count" Integer count

Number of
global buffers
(dirty)

"node_local.wcs_active_lvl" Integer count

Number of
global buffers
(total)

"sgmnt_data.n_bts" Integer count

Number of
processes
accessing the
database

"node_local.ref_cnt" Integer count (always
greater than zero, because
the process running
%PEEKBYNAME has the
database open)

QDBRUNDOWN
setting

"sgmnt_data.mumps_can_bypass" Integer - 1 means
QDBRUNDOWN set, 0



More Information Additional Information for GTM-8296 -
%PEEKBYNAME()

FIS
Page 54, April 11, 2016 FIS

Parameter ^%PEEKBYNAME() Parameter Value

means QDBRUNDOWN
not set

Region
replication
sequence
number

"sgmnt_data.reg_seqno" Integer count

Spanning nodes
absent

"sgmnt_data.span_node_absent" Integer - 1 means that no
global variable nodes span
multiple database blocks,
0 means GT.M does not
know (in the past, at
least one global variable
node spanned multiple
blocks, but it may since
have been overwritten or
KILL'd)

Replication Parameters

Calls to %PEEKBYNAME with the listed parameter as the first or only parameter return replication
fields as described. For example:

GTM>write $$^%PEEKBYNAME("repl_inst_hdr.inst_info.this_instname") ; Name of this instance
Collegeville
GTM>write $$^%PEEKBYNAME("gtmsource_local_struct.secondary_instname",0) ; Name of instance in
 slot 0 of replication instance file
Malvern
GTM>set x=$$^%PEEKBYNAME("jnlpool_ctl_struct.jnl_seqno") ; Sequence number in Journal Pool of
 Collegeville

GTM>set y=$$^%PEEKBYNAME("gtmsource_local_struct.read_jnl_seqno",0) ; Next sequence number to
 send to Malvern
GTM>write x-y ; Current replication backlog from Collegeville to Malvern
2
GTM>

Replication
Parameter

^%PEEKBYNAME() Parameter Value

Journal sequence
number

"jnlpool_ctl_struct.jnl_seqno" Integer

Journal sequence
number to send to
receiving instance in
replication file slot

"gtmsource_local_struct.read_jnl_seqno",i where i is
the slot number in the replication instance file

Integer



Additional Information for GTM-8296 -
%PEEKBYNAME()

More Information

GTM V6.3-000
FIS

April 11, 2016, Page 55

Replication
Parameter

^%PEEKBYNAME() Parameter Value

Name of receiving
instance in replication
instance file slot

"gtmsource_local_struct.secondary_instname",i where i
is the slot number in the replication instance file

String of text

Name of this instance "repl_inst_hdr.inst_info.this_instname" String of text

QDBRUNDOWN
setting

"repl_inst_hdr.qdbrundown" Integer - 1 means
QDBRUNDOWN
set, 0 means
QDBRUNDOWN not
set

Supplementary
Replication

"repl_inst_hdr.is_supplementary" Integer - 1 means
supplementary
instance; 0 means
not supplementary
instance

Updates disabled "jnlpool_ctl_struct.upd_disabled" Integer - 1 means
updates disabled;
0 means updates
permitted



GTM V6.3-000
Page 56, April 11, 2016 FIS



GT.M V6.3-000
FIS

April 11, 2016, Page 57

Error and Other Messages

CRYPTJNLMISMATCH 

CRYPTJNLMISMATCH,  Encryption settings mismatch between journal file jjjj and corresponding
database file dddd

All GT.M Components Error: Encryption settings in the header of database file dddd do not match those
stored in the header of journal file jjjj.\nThis is most likely caused by inappropriate operator action
such as replacing the current journal file with an older journal file.\n

Action: Correct the error that caused the incorrect journal file to be pointed to by the database file.
If the correct journal file has been inadvertently deleted, create new journal files with the -noprevjnl
switch. Take a backup as soon as possible thereafter. Depending on your situation, you may need to
refresh secondary instances.

CRYPTKEYRELEASEFAILED 

CRYPTKEYRELEASEFAILED,  Could not safely release encryption key corresponding to file ffff.
eeee

All GT.M Components Error: gtmcrypt plug-in reports that it is unable to release the memory
pertaining to the encryption key associated with file ffff due to error eeee

Action: Examine message eeee from the plug-in and take the needed action: for example, ensure that
the memory is accessible, process has correct permissions, and so on.

CRYPTNOKEY 

CRYPTNOKEY,  No encryption key specified

MUPIP Error: MUPIP REORG -ENCRYPT prints this message if no encryption key is specified.

Action: Provide the requisite encryption key to the command as instructed in GT.M documentation.

ENCRYPTCONFLT 

ENCRYPTCONFLT,  MUPIP REORG -ENCRYPT and MUPIP EXTRACT -FORMAT=BIN cannot run
concurrently - skipping oooo on region: rrrr, file: ffff

MUPIP Error: MUPIP cannot perform REORG -ENCRYPT and EXTRACT -FORMAT=BIN on file ffff at
the same time; rrrr is the region that mapped the file; oooo is the just started operation.

Action: Reschedule the just started operation or terminate the conflicting operation to allow the just
started operation to run immediately.



Error and Other Messages EXTRINTEGRITY 

FIS
Page 58, April 11, 2016 FIS

EXTRINTEGRITY 

EXTRINTEGRITY,  Database ffff potentially contains spanning nodes or data encrypted with two
different keys

MUPIP Error: MUPIP EXTRACT cannot run because the database file ffff might contain spanning nodes
or be partially encrypted with a particular key. Proceeding on a live database in such situation could
result in data corruption.

Action: Reformat the data to contain no spanning nodes, let MUPIP REORG -ENCRYPT complete
(re)encryption of the database, or reissue the MUPIP EXTRACT command with a -FREEZE qualifier
to acquire stand-alone access for the duration of the procedure. As a final resort, use an -OVERRIDE
qualifier to proceed on a live database that either contains spanning nodes or is undergoing
(re)encryption. FIS highly discourages using the -OVERRIDE qualifier unless the database is quiescent.

GDINVALID 

GDINVALID,  Unrecognized Global Directory file format: ffff, expected label: eeee, found: bbbb

Run Time Error: This indicates that a version of the global directory file xxx does not match with the
version expected by GT.M. The file might have been created by an incompatible GT.M version. If the
text of eeee or bbbb contain non-graphic characters, GT.M replaces each of them with a period (.).

Action: Compare the labels eeee and bbbb. If the global directory was created by an earlier GT.M
version, upgrade the file by loading and then saving the file using the GDE of the new GT.M version.

INVLINKTMPDIR 

INVLINKTMPDIR,  Value for $gtm_linktmpdir is either not found or not a directory: dddd

Run Time Error: Indicates the process cannot access directory dddd, which it needs in order to do auto-
relink as specified by its $ZROUTINES; the directory may not exist as a directory or the process lacks
authorization to the directory.

Action: The directory specification comes from $gtm_linktmpdir if it is defined, otherwise from
$gtm_tmp if that is defined; otherwise it defaults to the system temporary directory, typically /tmp.
Either correct the environment variable definition or ensure directory dddd is appropriately set up.
Note that all users of auto-relink for a directory normally need to use the same temporary directory for
their relink control files.

INVLOCALE 

INVLOCALE,  Attempt to reset locale to supplied value of $gtm_locale xxxx failed

All GT.M Components Error: GT.M found the value of $gtm_locale xxxx did not specify a valid
currently supported local

Action: Correct the locale setup and restart the process.



INVZWRITECHAR  Error and Other Messages

GTM V6.3-000
FIS

April 11, 2016, Page 59

INVZWRITECHAR 

INVZWRITECHAR,  Invalid characters for a ZWRITE format

Run Time/Compile Time Error: When transforming an expression from ZWRITE format to full text
format with $ZWRITE(expr,1), the expression must be in a format that GT.M would have produced
when transforming a text string to ZWRITE format.

Action: Examine the expression and ensure that it is in proper ZWRITE format

IOEOF 

IOEOF,  Attempt to read past an end-of-file

Run Time/MUPIP Error: This indicates that a READ command for a run-time system or a MUPIP
command attempted to move past an end-of-file.

Action: Verify that the $ZEOF special variable is tested by the function betwee READs or that an
EXCEPTION code string is assigned to handle EOFs. Alternatively, have your $ETRAP (or $ZTRAP)
error handling deal with this error. The USE command has a REWIND deviceparameter that allows you
to read from the beginning of the file without having to CLOSE and OPEN again, which may facilitate
recovery from this error. Attempting to READ from a non-existent file not opened READONLY also
causes this error. In the event of a MUPIP error, make sure the file being read is not corrupted.

JNLDBSEQNOMATCH 

JNLDBSEQNOMATCH,  Journal file ffff has beginning region sequence number jjjj but database dddd
has region sequence number ssss

MUPIP Error: MUPIP JOURNAL ROLLBACK FORWARD has found that journal file ffff has beginning
region sequence number jjjj, but the corresponding database file dddd has region sequence number
ssss. This condition may arise due to missing or incorrect journal files, for example due to a -NOCHAIN
specification.

Action: Use "*" and / or do not use -NOCHAIN to specify the list of journal files. If specifying explicit
list of journal file names verify you are specifying the exact set of needed journal file names.

JNLPOOLRECOVERY 

JNLPOOLRECOVERY,  The size of the data written to the journal pool (xxxx) does not match the size
of the data in the journal record (yyyy) for the replication instance file zzzz. The journal pool has been
recovered.

Run Time Error: An internal error was detected while writing to the journal pool associated with
instance file zzzz, and the journal file has been recovered. Subsequent transactions will be written to
the journal pool, but the source server will switch to reading from files until it reaches them. A core file
may have been produced.



Error and Other Messages JOBLVN2LONG 

FIS
Page 60, April 11, 2016 FIS

Action: Report the entire incident context to your GT.M support channel.

JOBLVN2LONG 

JOBLVN2LONG,  The zwrite representation of a local variable transferred to a JOB'd process is too
long. The zwrite representation cannot exceed MMMM. Encountered size: LLLL

Run Time Error: This error indicates that the total length LLLL (in bytes) of the ZWRITE representation
of the variable name, subscripts, and value exceeds the maximum MMMM supported by the
PASSCURLVN facility. Note that the ZWRITE representation contains the appropriate punctuation
for any subscripts, the equal-sign and replaces any non-graphic characters with their $[Z]CHAR()
representations.

Action: Action: Consider whether the JOB'd process needs the variable(s) that exceed the maximum
for PASSCURLVN - if not they can be taken out of scope before the JOB command. Alternatively, pass
them using global variables or a local SOCKET device.

JOBLVNDETAIL 

Last used version: V6.2-003

JOBLVNDETAIL,  The zwrite representation of a local variable transferred to a JOB'd process is too
long. The zwrite representation cannot exceed XXXX. Encountered size: YYYY

Run Time Error: The length of the zwrite representation of a local, (including the quotes, the '=',
concatenate operator "_", and "$[Z]C()") has the length of YYYY which exceeds the maximum limit of
XXXX.

Action: Please check the sizes of locals that needs to be sent and make sure their lengths are less than
XXXX. For those big locals, consider using another mechanism such as sockets.

MULTIPROCLATCH 

MULTIPROCLATCH,  Failed to get multi-process latch at xxxx

MUPIP Error: A process was unable to acquire a multi-process latch (the resource that ensures
correctness of execution amongst multiple processes) in a timely manner; xxxx is the address of the
failing request.

Action: Report the entire incident context to your GT.M support channel.

MUPIPSET2BIG 

MUPIPSET2BIG,  vvvv too large, maximum tttt allowed is mmmm

MUPIP Error: The value vvvv for tttt specified in a MUPIP SET command is above the maximum
mmmm for tttt



MUPIPSET2SML  Error and Other Messages

GTM V6.3-000
FIS

April 11, 2016, Page 61

Action: Decrease the specified value to not exceed the maximum.

MUPIPSET2SML 

MUPIPSET2SML,  vvvv too small, minimum tttt allowed is mmmm

MUPIP Error: The value vvvv for tttt specified in a MUPIP SET command is below the minimum
mmmm for tttt

Action: Increase the specified value to meet or exceed the minimum.

MUPJNLINTERRUPT 

MUPJNLINTERRUPT,  Database file xxxx indicates interrupted MUPIP JOURNAL command. Restore
from backup for forward recover/rollback.

MUPIP Error: This indicates that a MUPIP JOURNAL -ROLLBACK -FORWARD or a MUPIP JOURNAL
-RECOVER -FORWARD did not proceed because a previous MUPIP JOURNAL command attempted on
the databasewas terminated abnormally.

Action: Restore the database and journal files from a backup to proceed with the MUPIP JOURNAL -
ROLLBACK -FORWARD or MUPIP JOURNAL -RECOVER -FORWARD.

MUREENCRYPTEND 

MUREENCRYPTEND,  Database ffff : MUPIP REORG ENCRYPT finished by pid pppp at transaction
number 0xtttt

MUPIP Information: The MUPIP REORG -ENCRYPTinitiated by process pppp completed an encyption
change for database file ffff at transaction number 0xtttt

Action: None required.

MUREENCRYPTSTART 

MUREENCRYPTSTART,  Database ffff : MUPIP REORG ENCRYPT started by pid pppp at transaction
number 0xtttt

MUPIP Information: Process pppp used MUPIP REORG -ENCRYPT to start or restart an encyption
change at transaction number 0xtttt for database file ffff

Action: None required.

MUREENCRYPTV4NOALLOW 

MUREENCRYPTV4NOALLOW,  Database (re)encryption supported only on fully upgraded V5
databases. ffff has V4 format blocks



Error and Other Messages NLRESTORE 

FIS
Page 62, April 11, 2016 FIS

MUPIP Error: MUPIP cannot enable or perform encryption on database file ffff while it contains GDS
V4 format blocks.

Action: Upgrade the database to V5 and re-run the action.

NLRESTORE 

NLRESTORE,  DB file header field FFFF: VVVV does not match the value used in original mapping -
restoring to: OOOO

DSE Warning: When DSE encounters a internal header field named FFFF whose value VVVV conflicts
with the original value OOOO, DSE issues a warning message and uses the original value in order to
successfully access shared memory.

Action: Please restore the header fields to their correct values. As a low level database repair tool of
last resort, DSE assumes a knowledgeable user, and does no edit checking of input values. Do not use
DSE to make routine changes, and do not use DSE to change a parameter if you can accomplish the
same goal with MUPIP. As the normal system administration and operations tool, MUPIP has the ability
to change parameters you might normally need to change, and it does check that input values are
reasonable. Changing fileheader parameters with DSE should normally be performed with stand-alone
access. Change fileheader parameters on an open database only under the guidance of an expert GT.M
support channel.

NOMORESEMCNT 

NOMORESEMCNT,  SSSS counter semaphore has reached its maximum and stopped counting for
database DDDD. Run MUPIP JOURNAL -ROLLBACK -BACKWARD, MUPIP JOURNAL -RECOVER -
BACKWARD or MUPIP RUNDOWN to restore the database files and shared resources to a clean state

All GT.M Components Information: The counter semaphore reached its system-imposed limit so GT.M
no longer maintains the count. SSSS is either "access" or "ftok" signifying the particular counter type
that stopped. DDDD is the database of the corresponding counter.

Action: GT.M will not automatically shutdown the database. To clean the database file header and
shared resources after the last process has exited the database file, do an explicit MUPIP -ROLLBACK -
BACKWARD (for replicated database files), MUPIP JOURNAL -RECOVER -BACKWARD (for database
files that are journaled but not replicated), or MUPIP RUNDOWN (for database files that are neither
replicated nor journaled), on the database file DDDD.

NONTPRESTART 

NONTPRESTART,  Database dddd; code: cccc; blk: bbbb in glbl: ^gggg; blklvl: llll, type: tttt, zpos:
pppp

Run Time Information: This is an informational message for non-TP transaction messages. The
frequency of this message can be set by $gtm_nontprestart_log_delta and $gtm_nontprestart_log_first



NOPRINCIO  Error and Other Messages

GTM V6.3-000
FIS

April 11, 2016, Page 63

environment variables. dddd is the database the restart occurred; cccc is the code described in the
Maintaining Database Integrity chapter of the Administration and Operations Guide; bbbb is the block
where GT.M detected a concurrency conflict that caused the restart; gggg shows the global reference
within that block; llll is the level of that block; tttt indicates the type of activity that detected the
conflict; pppp is the source line where restart ocurred on.

Action: None required in most cases. If the messages are too frequent either investigate the processes
that reference to that particular global and its block, or reduce the number of messages by tweaking
$gtm_nontprestart_log_delta and $gtm_nontprestart_log_first environment variables.

NOPRINCIO 

NOPRINCIO,  NOPRINCIO Unable to write to principal device

Run Time Fatal: This indicates that GT.M attempted to but could not read from or write to the principal
device.

Action: The NOPRINCIO error message works differently from other messages. The first occurrence
results in an error that can be caught by device and trap handlers. The second occurrence is FATAL
which does not drive device or trap handlers and terminates the process. This termination does not
allow any application level orderly shutdown and, depending on the application may lead to out-of-
design application state. Therefore FIS recommends appropriate application level error handling that
recognizes this error and performs an orderly shutdown without performing any additional READ
or WRITE to the principal device. The most common causes for the principal device to cease to exist
involve terminal sessions or socket connections (including those from processes started by inetd/
xinetd). When the remote client terminates the connection, the underlying principal device is closed
and becomes inaccessible when the process attempts to READ from, or WRITE to, it. In the case of
terminals, a typical cause is users closing the window of a terminal session without cleanly exiting from
the GT.M process.

NOTALLJNLEN 

NOTALLJNLEN,  Journaling disabled/off for dddd regions

MUPIP Warning: This indicates that some or all regions do not have journal state ON.

Action: Ensure you have journaling enabled for all regions that require it; use MUPIP SET to enable
journaling.

NOTALLREPLON 

NOTALLREPLON,  Replication off for dddd regions

MUPIP Warning: This indicates that some or all regions have replication state OFF.

Action: Ensure you have replication on for all regions that require it; use MUPIP SET to enable
replication.



Error and Other Messages PBNINVALID 

FIS
Page 64, April 11, 2016 FIS

PBNINVALID 

PBNINVALID,  ssss does not have a field named ffff

Utility Error: This message comes from %PEEKBYNAME() when a valid struct but an invalid field name
is given as the first argument. A struct, ssss, does not have a field named ffff.

Action: Check the field name. Verify the field exists and its specification has no typo.

PBNNOFIELD 

PBNNOFIELD,  %ZPEEKBYNAME() requires a field.item as its first parameter

Utility Error: The first argument of %ZPEEKBYNAME() may be missing, empty, contain an unsupported
field or be missing an item.

Action: Verify the first parameter to %ZPEEKBYNAME() is not NULL.

PBNNOPARM 

PBNNOPARM,  First parameter pppp does not support a second parameter

Utility Error: pppp does not take a region name or index number as the second parameter to
%PEEKBYNAME().

Action: Omit the second parameter of %PEEKBYNAME() or make it NULL.

PBNPARMREQ 

PBNPARMREQ,  A first parameter value pppp requires a second parameter specified containing rrrr

Utility Error: pppp requires a second parameter but the second parameter of %PEEKBYNAME() is NULL
or undefined. rrrr indicates whether the required parameter is an index number or region name.

Action: Depending on rrrr, choose a valid index number or region name and make sure the second
parameter is not NULL.

PBNUNSUPSTRUCT 

PBNUNSUPSTRUCT,  $ZPEEK() does not support structure ssss

Utility Error: The first argument of %PEEKBYNAME() is a value that is not known to $ZPEEK().

Action: Make sure the first argument of %PEEKBYNAME() is a valid struct name that is accessible to
$ZPEEK.



RECLOAD  Error and Other Messages

GTM V6.3-000
FIS

April 11, 2016, Page 65

RECLOAD 

RECLOAD,  Error loading record number: nnnn

MUPIP Error: This message identifies a record that MUPIP could not LOAD and follows a message
about the cause. If this message is Fatal, which it can be for BIN format, it produces a core file for
diagnostic analysis.

Action: Address the cause or, for GO and ZWR format input files, examine the record with a text editor
for possible correction or alternate action and for BIN format if fixing the cause does not resolve the
error switch to ZWR format EXTRACT.

REPLLOGOPN 

REPLLOGOPN,  Replication subsystem could not open log file xxxx : yyyy. Logging done to zzzz

MUPIP Error: This indicates that MUPIP could not find the log file or did not have access permission
to open the log file. If there is another log file available (a previously opened file), MUPIP writes to the
other log file. If there is no other log file available, MUPIP sends any remaining messages to /dev/null
and terminates the replication server process.

Action: Check the log file permissions, and if permissions are correct, move the log file and specify that
MUPIP should log to a log file which has appropriate access permissions.

REPLSTATEOFF 

REPLSTATEOFF,  MUPIP JOURNAL -ROLLBACK -BACKWARD cannot proceed as database xxxx
does not have replication ON

MUPIP Error: This indicates that a MUPIP JOURNAL -ROLLBACK -BACKWARD command cannot
proceed because the specified database xxxx does not have replication state ON. In most situations, this
error occurs when the journal file storage runs out of disk space.

Action: Ensure replication is turned ON for a database, before executing the MUPIP JOURNAL -
ROLLBACK -BACKWARD command. If the database is in the WAS_ON state, refer to the "Recovering
from the WAS_ON state" section in the Database Replication chapter of the Administration and
Operations Guide. Alternatively, if replication was not in use on the database, use MUPIP JOURNAL -
RECOVER.

RESRCINTRLCKBYPAS 

RESRCINTRLCKBYPAS,  tttt with PID qqqq bypassing the ssss semaphore for region rrrr (ffff)
currently held by PID pppp.

Run Time Information: GT.M issues the RESRCINTRLCKBYPAS message to the system log as an
indication it may not detect when the last process detaches from the shared resource and therefore



Error and Other Messages SETQUALPROB 

FIS
Page 66, April 11, 2016 FIS

may not rundown the database shared resources as it normally would. GT.M protects the actions of
setting up and tearing down the shared resources associated with a database with a pair of semaphores.
Because DSE, and LKE are tools for diagnosing issues, when they start and find they cannot acquire the
semaphores after a reasonable number of tries, they proceed to open the database anyway because it is
highly probable the database is already set up. When DSE and LKE bypass the semaphore acquisition,
they leave the count of attached processes incorrect. When many processes terminate at the same
time, typically because of a system shutdown, there can be significant contention for the semaphores
that can cause their terminations to take an unusually long time. When this happens, and the count
of remaining attached processes is significant, a process may skip the semaphore acquisition, again
leaving the count of attached process incorrect. If either of these events occurs, GT.M issues the
RESRCINTRLCKBYPAS message where tttt identifies the process type: "LKE", "DSE" or "GT.M"; qqqq is
the bypassing process's PID; ssss identifies the semaphore type: "FTOK" or "access control"; rrrr is the
region bypassed; ffff is the file corresponding to region rrrr; pppp is the PID of the process holding the
semaphore.

Action: These messages when shutting down GT.M activity may indicate a need to complete the
process by invoking a MUPIP JOURNAL -ROLLBACK -BACKWARD for replicated databases, a MUPIP
JOURNAL -RECOVER -BACKWARD for unreplicated journaled databases and a MUPIP RUNDOWN
for journal-free databases to get the database to a safe state; doing so as part of every shutdown is good
practice.

SETQUALPROB 

SETQUALPROB,  Error getting qqqq qualifier value

MUPIP Error: The utility was unable to parse the command input to successfully determine the value
supplied for the qqqq qualifier

Action: Examine the command and correct the value

TPRESTART 

TPRESTART,  Database mmmm; code: xxxx; blk: yyyy in glbl: zzzz; pvtmods: aaaa, blkmods: bbbb,
blklvl: cccc, type: dddd, readset: eeee, writeset: ffff, local_tn: gggg, zpos: hhhh

Run Time Information: The UNIX environment variables or OpenVMS logical names
GTM_TPRESTART_LOG_FIRST and GTM_TPRESTART_LOG_DELTA control the logging of
TPRESTART messages. GTM_TPRESTART_LOG_FIRST indicates the number of TP restarts to log
from GT.M invocation. Once that many have been logged, every GTM_TPRESTART_LOG_DELTA TP
restarts, GT.M logs a restart message. If GTM_TPRESTART_LOG_DELTA is undefined, GT.M performs
no operator logging. The default value for GTM_TPRESTART_LOG_FIRST is 0 (zero), which leaves the
control completely with GTM_TPRESTART_LOG_DELTA. The facility that produces this message can
serve as a diagnostic tool in developmental environments for investigating contention due to global
updates. A zzzz of "*BITMAP" indicates contention in block allocation which might involve multiple
globals. hhhh is the $ZPOSITION of the line of M code that caused the restart of the transaction;
utilities leave this field blank.



TRIGINVCHSET  Error and Other Messages

GTM V6.3-000
FIS

April 11, 2016, Page 67

Action: Disable, or adjust the frequency of, these messages with the mechanism described above. To
reduce the number of restarts, consider changes to the global structure, varying the time when work is
scheduled. Consider whether the business and program logic permits the use of NOISOLATION.

TRIGINVCHSET 

TRIGINVCHSET,  Trigger tttt for global gggg was created with CHSET=cccc which is different from
the current $ZCHSET of this process

Trigger/Run Time Error: TRIGINVCHSET occurs when a process invokes a trigger on a global using a
$ZCHSET that is different from the $ZCHSET used at the time of loading the first trigger on that global.
GT.M implicitly uses the $ZCHSET of the first trigger on a global to invoke all triggers on that global.
Note that tttt is the name of the first trigger on the global gggg-not necessarily the name of the trigger
being invoked. cccc is the $ZCHSET of the process at the time of loading tttt on global gggg.

Action: Ensure that the process invoking a trigger on a global uses the same $ZCHSET that was used
to load the first trigger on that global. If your application requires triggers in both M and UTF-8 modes,
use different globals to load M mode and UTF-8 mode triggers.



GTM V6.3-000
Page 68, April 11, 2016 FIS


	
	Table of Contents
	V6.3-000
	Overview
	Conventions
	Platforms
	Platform support lifecycle

	32- vs. 64-bit platforms
	Call-ins and External Calls
	Internationalization (Collation)
	Environment Translation

	Recompile
	Rebuild Shared Libraries or Images
	Additional Installation Instructions
	
	Compiling the Reference Implementation Plugin


	Upgrading to GT.M V6.3-000
	Stage 1: Global Directory Upgrade
	Stage 2: Database Files Upgrade
	Database Compatibility Notes

	Stage 3: Replication Instance File Upgrade
	Stage 4: Journal Files Upgrade
	Stage 5: Trigger Definitions Upgrade
	Downgrading to V5 or V4

	Managing M mode and UTF-8 mode
	Setting the environment variable TERM
	Installing Compression Libraries

	Change History
	V6.3-000

	Database
	Language
	System Administration
	Other
	More Information
	Additional information for GTM-7291 - MUPIP JOURNAL -ROLLBACK qualifiers
	Additional Information for GTM-8296 - %PEEKBYNAME()
	Examples:
	LISTALL^%PEEKBYNAME
	LIST^%PEEKBYNAME(.output)
	Labels for Selected Fields
	Region Parameters
	Replication Parameters



	Error and Other Messages
	CRYPTJNLMISMATCH 
	CRYPTKEYRELEASEFAILED 
	CRYPTNOKEY 
	ENCRYPTCONFLT 
	EXTRINTEGRITY 
	GDINVALID 
	INVLINKTMPDIR 
	INVLOCALE 
	INVZWRITECHAR 
	IOEOF 
	JNLDBSEQNOMATCH 
	JNLPOOLRECOVERY 
	JOBLVN2LONG 
	JOBLVNDETAIL 
	MULTIPROCLATCH 
	MUPIPSET2BIG 
	MUPIPSET2SML 
	MUPJNLINTERRUPT 
	MUREENCRYPTEND 
	MUREENCRYPTSTART 
	MUREENCRYPTV4NOALLOW 
	NLRESTORE 
	NOMORESEMCNT 
	NONTPRESTART 
	NOPRINCIO 
	NOTALLJNLEN 
	NOTALLREPLON 
	PBNINVALID 
	PBNNOFIELD 
	PBNNOPARM 
	PBNPARMREQ 
	PBNUNSUPSTRUCT 
	RECLOAD 
	REPLLOGOPN 
	REPLSTATEOFF 
	RESRCINTRLCKBYPAS 
	SETQUALPROB 
	TPRESTART 
	TRIGINVCHSET 


